Chapter 1, Exercise 1.22 (page 18)

(a) Consider the set $\{1, ..., n\}$. We generate a subset X of this set as follows: a fair coin is flipped independently for each element of the set; if the coin lands heads then the element is added to X, and otherwise it is not. Argue that the resulting set X is equally likely to be any one of the 2^n possible subsets.

Each of the *n* elements can either be added to *X* or not (depending on each of the *n* coin flips), accounting for the total of 2^n possible subsets. For any given subset *S* of $\{1, ..., n\}$, let Π_S be the string of *n* ones and zeroes where $\Pi_S(i) = 1$ if $i \in S$ and $\Pi_S(i) = 0$ otherwise. The probability that the *i*th coin flip lands heads when $\Pi_S(i) = 1$ is 1/2 (and likewise for landing tails when $\Pi_S(i) = 0$). So the set *S* is chosen with probability $(\frac{1}{2})^n = \frac{1}{2^n}$. Since any given subset *S* is chosen with an equal probability of $\frac{1}{2^n}$, *X* is equally likely to be any one of the 2^n possible subsets. (Also see Lemma 1.5 on page 8 of text.)

(b) Suppose that two sets X and Y are chosen independently and uniformly at random from all the 2^n subsets of $\{1, ..., n\}$. Determine $\mathbf{Pr}[X \subseteq Y]$ and $\mathbf{Pr}[X \cup Y = \{1, ..., n\}]$. By the law of total probability (theorem 1.6 on page 9), we know that

$$\mathbf{Pr}[X \subseteq Y] = \sum_{k=0}^{n} \mathbf{Pr}[X \subseteq Y \mid |Y| = k] \cdot \mathbf{Pr}[|Y| = k].$$
(1)

We will proceed to solve the right side of (1). If |Y| = k, there are 2^k subsets of Y. Call these subsets $S_1, S_2, ..., S_{2^k}$. By part (a), X is equally likely to be any of these subsets and $\mathbf{Pr}[X = S_i] = \frac{1}{2^n}$ for $1 \le i \le 2^k$. Therefore

$$\mathbf{Pr}[X \subseteq Y \mid |Y| = k] = \mathbf{Pr}\left[\bigcup_{i=1}^{2^{k}} X = S_{i}\right]$$

=
$$\mathbf{Pr}[X = S_{1}] + \mathbf{Pr}[X = S_{2}] + \dots + \mathbf{Pr}[X = S_{2^{k}}]$$

=
$$\sum_{i=1}^{2^{k}} \frac{1}{2^{n}} = \frac{2^{k}}{2^{n}} = 2^{k-n}.$$
 (2)

Also,

$$\mathbf{Pr}[|Y| = k] = \frac{\text{number of subsets of } \{1, ..., n\} \text{ of size } k}{\text{total number of subsets of } \{1, ..., n\}}$$
$$= \frac{\binom{n}{k}}{2^n} = \binom{n}{k} 2^{-n}.$$
(3)

Plugging (2) and (3) into equation (1) gives us:

$$\mathbf{Pr}[X \subseteq Y] = \sum_{k=0}^{n} 2^{k-n} {n \choose k} 2^{-n}$$
$$= \frac{1}{2^n} \sum_{k=0}^{n} {n \choose k} \left(\frac{1}{2}\right)^{n-k} = \frac{1}{2^n} \left(\frac{1}{2} + 1\right)^n$$
(4)

$$= \frac{1}{2^n} \left(\frac{3}{2}\right)^n = \left(\frac{3}{4}\right)^n,\tag{5}$$

where (4) is due to the Binomial Theorem, which states that $\sum_{k=0}^{n} {n \choose k} a^{n-k} b^k = (a+b)^n$.

This result can be directly applied to the second part of the problem as follows.

$$\mathbf{Pr}[X \cup Y = \{1, ..., n\}] = \mathbf{Pr}[\{1, ..., n\} - X \subseteq Y]$$
(6)

$$= \mathbf{Pr}[X \subseteq Y]. \tag{7}$$

The reasoning behind (6) is that after removing the set X from the set $\{1,...,n\}$, if all elements that remain are in the set Y, then $X \cup Y = \{1, ..., n\}$. The second line (7) is due to what we learned in (5): if A and B are two sets chosen independently and uniformly at random from the subsets of $\{1, ..., n\}$, then $\mathbf{Pr}[A \subseteq B] = \left(\frac{3}{4}\right)^n$. Part (a) says the set A has as much of a chance of being equal to a given set X as it does $\{1, ..., n\} - X$, so $\mathbf{Pr}[X \cup Y = \{1, ..., n\}] = \left(\frac{3}{4}\right)^n$.