Mohamed Aly, Christine Chung (scribe), Mahmoud Elhaddad,
Sherif Khattab, and Jonathan Misurda (“Group A”) Homework 4
CS 3150 Randomness and Computation Due: Wed, Jan 25, 2006

Chapter 5, Exercise 5.10 (page 120)

Consider throwing m balls into n bins, and for convenience let the bins be numbered from
0 to n— 1. We say there is a k-gap starting at bin ¢ if bins 2,24+ 1,...,7+ k — 1 are empty.

(a) Determine the expected number of k-gaps.
Let the random variable X be the number of k-gaps in the n bins. Let X; =1 if
there exists a k-gap starting at bin ¢ and X; = 0 otherwise. Then, X = Z?:_Ok X,
and by linearity of expectation,
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Plugging (5) into (1) gives us

%:(”;k)m:(n—kﬁ)(”;k)m. (6)
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(b) Prove a Chernoff-like bound for the number of k-gaps. (Hint: If you let X; = 1 when
there is a k-gap starting at bin ¢, then there are dependencies between X; and X, 1;
to avoid these dependencies, you might consider X; and X x.)

Recall from part (a) that we have indicator random variables X;, where

X, = { 1 if there is a k-gap at ¢

0 otherwise



for 0 <7 < n—k, and the random variable X = Z?:_Ok X; = the number of k-gaps
in the n bins after m balls are thrown.

Let the random variable z; be the number of balls in bin 7 and let its corresponding
independent Poisson random variable be ;. Similarly, define an independent
Poisson random variable Y; that corresponds to X;.

Note that X; can equivalently be defined as a function of z;, x;11, ..., x;1k_1 as

follows: .
1y ey =0

Xi = (@i Tigr, oo Tigho1) = { 0 otherwise

Similarly, Y; can be defined as f(yi, Yit1, -, Yith—1)-

Let Z;, = X; + Xjao + ... = Z;LLISXZ+Jk and let ZZ-P =Y+ Y+ Yo +...=
n/k
Zjio Yi+jk-
With this in mind, we can express the total number of k-gaps as
k—1
X = Z;.
i=0

Since Z; is a function of X;, which is a function of z;, and E[Z;] = % by linearity
of expectation, we can let

ooz =L if Zo > (1+0)2X
GA\T0s w05 Tn—1 0 otherwise

and similarly,
if 2§ > (1+6) =

9o, s Yn-1) = !
Y 0 otherwise.

Then

E[g(z0, ..., 2n_1)] = Pr {Zo >(1+ 5)¥_

and -
E[X]
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Blon, 1)) = P 20 2 (140)
By theorem 5.7 on page 101 of the text:

Elg(zo, ..., 70 1)] < evVmE[g(yo, -, Yn_1)]

So
Pr|Zy > (1+0)



By the Chernoff bound on a sum of independent Poisson trials (theorem 4.4 page

64),

Pr {Zé’ > (1+ 5)%} < ¢ EIXI®/3k

Finally, by observing that if X > (1 4+ §)E[X] then there exists an ¢ such that
Zi > (14 5)%, and then applying union bound and substitution, we know:

Pr[X > (1+0)E[X]] <
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key/mPr {ZZ-P > (1+ 5)—]

kel—E[X]éz/skm.



