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Chapter 5, Exercise 5.10 (page 120)

Consider throwing m balls into n bins, and for convenience let the bins be numbered from
0 to n− 1. We say there is a k-gap starting at bin i if bins i, i + 1, ..., i+ k− 1 are empty.

(a) Determine the expected number of k-gaps.

Let the random variable X be the number of k-gaps in the n bins. Let Xi = 1 if
there exists a k-gap starting at bin i and Xi = 0 otherwise. Then, X =

∑n−k
i=0 Xi,

and by linearity of expectation,

E[X] = E

[

n−k
∑

i=0

Xi

]

=
n−k
∑

i=0

E[Xi]. (1)

E[Xi] = Pr[Xi = 1] (2)

= Pr

[

m
⋂

b=1

ball b does not land in bins i through i + k − 1

]

(3)

=
m
∏

b=1

Pr[ball b lands in one of the n − k other bins] (4)

=

(

n − k

n

)m

. (5)

Plugging (5) into (1) gives us

n−k
∑

i=0

(

n − k

n

)m

= (n − k + 1)

(

n − k

n

)m

. (6)

(b) Prove a Chernoff-like bound for the number of k-gaps. (Hint: If you let Xi = 1 when
there is a k-gap starting at bin i, then there are dependencies between Xi and Xi+1;
to avoid these dependencies, you might consider Xi and Xi+k .)

Recall from part (a) that we have indicator random variables Xi, where

Xi =

{

1 if there is a k-gap at i

0 otherwise
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for 0 ≤ i ≤ n−k, and the random variable X =
∑n−k

i=0 Xi = the number of k-gaps
in the n bins after m balls are thrown.

Let the random variable xi be the number of balls in bin i and let its corresponding
independent Poisson random variable be yi. Similarly, define an independent
Poisson random variable Yi that corresponds to Xi.

Note that Xi can equivalently be defined as a function of xi, xi+1, ..., xi+k−1 as
follows:

Xi = f(xi, xi+1, ..., xi+k−1) =

{

1 if
∑i+k−1

j=i xj = 0

0 otherwise

Similarly, Yi can be defined as f(yi, yi+1, ..., yi+k−1).

Let Zi = Xi + Xi+2k + . . . =
∑n/k

j=0 Xi+jk and let ZP
i = Yi + Yi+k + Yi+2k + . . . =

∑n/k
j=0 Yi+jk .

With this in mind, we can express the total number of k-gaps as

X =
k−1
∑

i=0

Zi.

Since Zi is a function of Xi, which is a function of xi, and E[Zi] = E[X ]
k

by linearity
of expectation, we can let

g(x0, ..., xn−1) =

{

1 if Z0 ≥ (1 + δ)E[X ]
k

0 otherwise

and similarly,

g(y0, ..., yn−1) =

{

1 if ZP
0 ≥ (1 + δ)E[X ]

k

0 otherwise.

Then

E[g(x0, ..., xn−1)] = Pr

[

Z0 ≥ (1 + δ)
E[X]

k

]

and

E[g(y0, ..., yn−1)] = Pr

[

ZP
0 ≥ (1 + δ)

E[X]

k

]

By theorem 5.7 on page 101 of the text:

E[g(x0, ..., xn−1)] ≤ e
√

mE[g(y0, ..., yn−1)]

So

Pr

[

Z0 ≥ (1 + δ)
E[X]

k

]

≤ e
√

mPr

[

ZP
0 ≥ (1 + δ)

E[X]

k

]

.
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By the Chernoff bound on a sum of independent Poisson trials (theorem 4.4 page
64),

Pr

[

ZP
0 ≥ (1 + δ)

E[X]

k

]

≤ e−E[X ]δ2/3k.

Finally, by observing that if X ≥ (1 + δ)E[X] then there exists an i such that

Zi ≥ (1 + δ)E[X ]
k

, and then applying union bound and substitution, we know:

Pr[X ≥ (1 + δ)E[X]] ≤ Pr

[

k−1
⋃

j=0

Zi ≥ (1 + δ)
E[X]

k

]

(7)

≤
k−1
∑

j=0

Pr

[

Zi ≥ (1 + δ)
E[X]

k

]

(8)

≤ ke
√

mPr

[

ZP
i ≥ (1 + δ)

E[X]

k

]

(9)

= ke1−E[X ]δ2/3k
√

m. (10)
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