Chapter 5, Exercise 5.10 (page 120)
Consider throwing m balls into n bins, and for convenience let the bins be numbered from 0 to $n-1$. We say there is a k-gap starting at bin i if bins $i, i+1, \ldots, i+k-1$ are empty.
(a) Determine the expected number of k-gaps.

Let the random variable X be the number of k-gaps in the n bins. Let $X_{i}=1$ if there exists a k-gap starting at bin i and $X_{i}=0$ otherwise. Then, $X=\sum_{i=0}^{n-k} X_{i}$, and by linearity of expectation,

$$
\begin{equation*}
\mathbf{E}[X]=\mathbf{E}\left[\sum_{i=0}^{n-k} X_{i}\right]=\sum_{i=0}^{n-k} \mathbf{E}\left[X_{i}\right] \tag{1}
\end{equation*}
$$

$$
\begin{align*}
\mathbf{E}\left[X_{i}\right] & =\operatorname{Pr}\left[X_{i}=1\right] \tag{2}\\
& =\operatorname{Pr}\left[\bigcap_{b=1}^{m} \text { ball } b \text { does not land in bins } i \text { through } i+k-1\right] \tag{3}\\
& =\prod_{b=1}^{m} \operatorname{Pr}[\text { ball } b \text { lands in one of the } n-k \text { other bins }] \tag{4}\\
& =\left(\frac{n-k}{n}\right)^{m} . \tag{5}
\end{align*}
$$

Plugging (5) into (1) gives us

$$
\begin{equation*}
\sum_{i=0}^{n-k}\left(\frac{n-k}{n}\right)^{m}=(n-k+1)\left(\frac{n-k}{n}\right)^{m} \tag{6}
\end{equation*}
$$

(b) Prove a Chernoff-like bound for the number of k-gaps. (Hint: If you let $X_{i}=1$ when there is a k-gap starting at bin i, then there are dependencies between X_{i} and X_{i+1}; to avoid these dependencies, you might consider X_{i} and X_{i+k}.)
Recall from part (a) that we have indicator random variables X_{i}, where

$$
X_{i}= \begin{cases}1 & \text { if there is a } k \text {-gap at } i \\ 0 & \text { otherwise }\end{cases}
$$

for $0 \leq i \leq n-k$, and the random variable $X=\sum_{i=0}^{n-k} X_{i}=$ the number of k-gaps in the n bins after m balls are thrown.
Let the random variable x_{i} be the number of balls in bin i and let its corresponding independent Poisson random variable be y_{i}. Similarly, define an independent Poisson random variable Y_{i} that corresponds to X_{i}.
Note that X_{i} can equivalently be defined as a function of $x_{i}, x_{i+1}, \ldots, x_{i+k-1}$ as follows:

$$
X_{i}=f\left(x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right)= \begin{cases}1 & \text { if } \sum_{j=i}^{i+k-1} x_{j}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Similarly, Y_{i} can be defined as $f\left(y_{i}, y_{i+1}, \ldots, y_{i+k-1}\right)$.
Let $Z_{i}=X_{i}+X_{i+2 k}+\ldots=\sum_{j=0}^{n / k} X_{i+j k}$ and let $Z_{i}^{P}=Y_{i}+Y_{i+k}+Y_{i+2 k}+\ldots=$ $\sum_{j=0}^{n / k} Y_{i+j k}$.
With this in mind, we can express the total number of k-gaps as

$$
X=\sum_{i=0}^{k-1} Z_{i}
$$

Since Z_{i} is a function of X_{i}, which is a function of x_{i}, and $\mathbf{E}\left[Z_{i}\right]=\frac{\mathbf{E}[X]}{k}$ by linearity of expectation, we can let

$$
g\left(x_{0}, \ldots, x_{n-1}\right)= \begin{cases}1 & \text { if } Z_{0} \geq(1+\delta) \frac{\mathbf{E}[X]}{k} \\ 0 & \text { otherwise }\end{cases}
$$

and similarly,

$$
g\left(y_{0}, \ldots, y_{n-1}\right)= \begin{cases}1 & \text { if } Z_{0}^{P} \geq(1+\delta) \frac{\mathbf{E}[X]}{k} \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\mathbf{E}\left[g\left(x_{0}, \ldots, x_{n-1}\right)\right]=\operatorname{Pr}\left[Z_{0} \geq(1+\delta) \frac{\mathbf{E}[X]}{k}\right]
$$

and

$$
\mathbf{E}\left[g\left(y_{0}, \ldots, y_{n-1}\right)\right]=\operatorname{Pr}\left[Z_{0}^{P} \geq(1+\delta) \frac{\mathbf{E}[X]}{k}\right]
$$

By theorem 5.7 on page 101 of the text:

$$
\mathbf{E}\left[g\left(x_{0}, \ldots, x_{n-1}\right)\right] \leq e \sqrt{m} \mathbf{E}\left[g\left(y_{0}, \ldots, y_{n-1}\right)\right]
$$

So

$$
\operatorname{Pr}\left[Z_{0} \geq(1+\delta) \frac{\mathbf{E}[X]}{k}\right] \leq e \sqrt{m} \operatorname{Pr}\left[Z_{0}^{P} \geq(1+\delta) \frac{\mathbf{E}[X]}{k}\right]
$$

By the Chernoff bound on a sum of independent Poisson trials (theorem 4.4 page 64),

$$
\operatorname{Pr}\left[Z_{0}^{P} \geq(1+\delta) \frac{\mathbf{E}[X]}{k}\right] \leq e^{-\mathbf{E}[X] \delta^{2} / 3 k}
$$

Finally, by observing that if $X \geq(1+\delta) \mathbf{E}[X]$ then there exists an i such that $Z_{i} \geq(1+\delta) \frac{\mathbf{E}[X]}{k}$, and then applying union bound and substitution, we know:

$$
\begin{align*}
\operatorname{Pr}[X \geq(1+\delta) \mathbf{E}[X]] & \leq \operatorname{Pr}\left[\bigcup_{j=0}^{k-1} Z_{i} \geq(1+\delta) \frac{\mathbf{E}[X]}{k}\right] \tag{7}\\
& \leq \sum_{j=0}^{k-1} \operatorname{Pr}\left[Z_{i} \geq(1+\delta) \frac{\mathbf{E}[X]}{k}\right] \tag{8}\\
& \leq k e \sqrt{m} \operatorname{Pr}\left[Z_{i}^{P} \geq(1+\delta) \frac{\mathbf{E}[X]}{k}\right] \tag{9}\\
& =k e^{1-\mathbf{E}[X] \delta^{2} / 3 k} \sqrt{m} . \tag{10}
\end{align*}
$$

