
Competitive Cost-Savings in Data Stream Management
Systems

Christine Chung ?, Shenoda Guirguis ??, and Anastasia Kurdia ? ? ?

Abstract. In Continuous Data Analytics and in monitoring applications, hun-
dreds of similar Aggregate Continuous Queries (ACQs) are registered at the Data
Stream Management System (DSMS) to continuously monitor the infinite input
stream of data tuples. Optimizing the processing of these ACQs is crucial in order
for the DSMS to operate at the adequate required scalability. One optimization
technique is to share the results of partial aggregation operations between differ-
ent ACQs on the same data stream. However, finding the query execution plan
that attains maximum reduction in total plan cost is computationally expensive.
Weave Share, a multiple ACQs optimizer that computes query plans in a greedy
fashion, was recently shown in experiments to achieve more than an order of mag-
nitude improvement over the best existing alternatives. Maximizing the benefit of
sharing, i.e., maximizing the cost-savings achieved by sharing partial aggregation
results, is the goal of Weave Share. In this paper we prove that Weave Share ap-
proximates the optimal cost-savings to within a factor of 4 for a practical variant
of the problem. To the best of our knowledge, this is the first theoretical guarantee
provided for this problem. We also provide exact solutions for two natural special
cases.

1 Introduction

In Continuous Data Analytics, such as pay-per-click applications, and in monitoring
applications, such as network, financial, health and military monitoring, hundreds of
similar Aggregate Continuous Queries (ACQs) are typically registered to continuously
monitor unbounded input streams of data updates [13, 7]. For example, a stock market
monitoring application allows each of its numerous users to register several monitor-
ing queries. Traders interested in a certain stock might register ACQs to monitor the
average, or maximum, trade volume in a certain period of time, e.g., the last 1, 8, or
24 hours. Meanwhile, decision makers might register monitoring queries for analysis
purposes with coarse time granularity over the same data stream, e.g., the average
trade volume in last week or month. Given the high data arrival rates, optimizing the
processing of ACQs is crucial for scalability of the system. Data Stream Management
Systems (DSMSs) were developed to be at the heart of every monitoring application,
(e.g., [3, 9, 2, 1, 14, 15]). DSMSs must efficiently handle the unbounded streams with
large volumes of data and large numbers of continuous queries. Thus, devising ways
to optimize the processing of multiple continuous queries is imperative for DSMSs to

? Department of Computer Science, Connecticut College. cchung@conncoll.edu
?? Oracle Inc. shenoda.guirguis@oracle.com

? ? ? Department of Computer Science, Bucknell University. ak034@bucknell.edu

exhibit the scalability required. The commonality of many of the ACQs is what makes
optimization possible.

An ACQ is typically defined over a certain window of the input data stream, to
bound its computations. (For example, an ACQ that monitors the average trade volume
of a stock index could report every hour the average trade volume in the past 24 hours).
Partial aggregation has been proposed to optimize the processing of an ACQ [11, 12,
5] by minimizing the repeated processing of overlapping windows. Partial aggregation
has also been utilized to share the processing of multiple similar ACQs with different
windows [10, 13, 7, 8]. Recently, the concept of Weaveability of two sets of ACQs was
introduced as an indicator of the potential benefits of sharing their processing [7]. By
exploiting weavability, the algorithm Weave Share optimizes the shared processing of
ACQs. Weave Share considers all factors that affect the cost of the shared query plan. It
selectively groups ACQs into multiple "execution trees" to minimize the total plan cost.
It was shown experimentally that Weave Share generates up to 40 times better quality
plans compared to the best alternative sharing scheme [7].

Contributions In this paper we provide formal guarantees on the performance of the
Weave Share algorithm. The total cost of a query plan can be represented as the cost
of the no-share query plan, in which all partial aggregations are independent, minus
the cost-savings achieved by sharing some partial aggregation operations. We provide
a lower bound for the cost-savings achieved by Weave Share. Specifically, we show
that for a widely applicable variant of the problem, in the worst case, Weave Share is
guaranteed to achieve a cost-savings of at least 1

4 of the maximum possible cost-savings.
In contrast with total cost of the query plan, cost-savings is actually a more incisive
measure that removes the distraction of the minimum "base-cost" that exists for any
given instance, even under the most optimal sharing arrangement. In the Appendix, we
also provide exact solutions for two practical special cases of the problem.

2 Background and definitions

We set the stage by providing the necessary background on ACQ semantics, the paired
window technique for partial aggregation [10], the procedure for "composing" multiple
ACQs together [10] so that the results of their partial aggregation can be "shared." We
then give a formal definition of the optimization problem at hand and give an overview
of an efficient practical algorithm for the problem.

2.1 Partial aggregation for one ACQ

Each ACQ (or query) comprises an aggregation operator (sum, max, count, etc.)
along with two parameters: the range r, the length (in time) of the window of data
being aggregated, and the slide s, which indicates how frequently the results should be
reported. For example, an ACQ may request that the maximum price of a particular
stock over the last hour (r = 60 min) be reported every 10 minutes (s = 10 min). If
r > s, as is the case in this example, we have a sliding or overlapping window, where

Range (r)

Slide (s)

g1 = (r % s) g2 = (s – g1)

g1 g2 g2 g1 g1 g1 g2

Range (r)

Slide (s)

(a) The paired window technique.

Composite Slide

Length = lcm(sa, sb)=18 sa=9

sb=6

ga,2=3 ga,1=6

gb,1=2
gb,2=4

gb,1 gb,2 gb,1 gb,1 gb,1 gb,1

ga,2 ga,1 ga,2 ga,1

replicate

replicate

merge

edges

common

edge

3 1 2 3 1 2 4 2

edges

Time: 3 4 6 9 10 12 16 18

S()

F()

P
a
rt

ia
l
a
g
g
re

g
a
te

s

F()

In
p
u
t
T

u
p
le

s

qa(ra,sa) qb(rb,sb)

Sub-aggregate S()

Final-aggregate F()

Execution tree

(b) Creation of a composite slide for 2 ACQs, a
and b, with respective ranges of 12 and 10 sec-
onds.

a single data tuple belongs to more than one window. If a new stock price value is
generated every minute, then this tuple participates in six aggregation operations.

Rather than aggregate the entire window of tuples from scratch each time, partial
aggregation [11, 10] first computes sub-aggregations of successive pieces of the win-
dow, then applies a final aggregation function over these sub-aggregates. For example
an aggregate countwould be computed by first using a count on each part of the win-
dow, then using a sum over the partial counts. This technique can be used over all the
distributive functions widely used in database systems. It reduces query processing cost
by preventing tuples from having to be aggregated repeatedly. Instead, each input tuple
is processed once by the sub-aggregation operator, the result of the sub-aggregation
gets buffered, and the final aggregate is assembled from those partial aggregates.

To capitalize on the idea of partial aggregation, Krishnamurthy et al. [10] proposed
the paired window technique, whereby each slide is partitioned into at most two slices
or fragments g1 and g2. See Figure 1a for an illustration. As pictured, g1 = r mod s,
and g2 = s − g1. Thus, since r/s is the number of slides per window, computing each
final aggregation uses at most d2r/se operations. This paired window approach allows
for effective sharing of the partial aggregation results for different queries on the same
data, the details of which we describe in the following section.

2.2 Merging multiple ACQs

To process multiple ACQs with different range and slide parameters, there are two basic
strategies [10]: unshared partial aggregation (also referred to as no-sharing), or shared
partial aggregation. When unshared partial aggregation is used, each query is simply
processed separately using the paired window technique described above. This requires
storing multiple copies of the input tuples, as each query is answered using its own
individual sub-aggregation results.

For the shared partial aggregation strategy for k > 1 ACQs, we need to compute
the fragments on which partial aggregation is applied in a different manner, so that
the sub-aggregation results can be reused in computing a different final aggregation
for each query. These fragments are computed as follows. For k ACQs with slides

s1, s2, . . . , sk, we create a composite slide of length s′ equal to the least common mul-
tiple of (s1, s2, . . . , sk). Copy and repeat each slide i = 1 . . . k along with its corre-
sponding paired fragments s′/si times, to fit the full length of the composite slide s′

(see Figure 1b). The end of each fragment is referred to as an edge, and it serves as
a demarcation of the boundary between two fragments. (We use the term edge in this
paper to ensure consistency with previous work on query planning).

The edges or fragments of the final composite slide are determined by the distinct
edges that remain after all k slides have been overlayed. After these new fragments
are computed, partial aggregation can be applied on each fragment, and the results can
be shared between different ACQs. While shared partial aggregation certainly reduces
processing costs at the sub-aggregation level, it increases costs at final aggregation level.
Depending on the queries, the overall total cost may be higher than in case of no sharing
at all (see Example 1 in the Appendix).

2.3 The objective function

An input instance for our optimization problem is comprised of a set of n ACQs. We
will say that two or more ACQs are shared if their partial aggregation was shared via
the shared partial aggregation strategy described above. We define an execution tree to
be a subset of the n ACQs in which all the ACQs in the subset are shared. A query plan
Q is then a grouping of the n ACQs into m execution trees, t1, t2, . . . , tm.

For each tree ti, let Eti (or, more simply, Ei) be the number of fragments generated
per second (also referred to as the edge rate). Let Ωi denote the total number of final-
aggregation operations performed on each fragment, which is termed the tree overlap
factor. If tree i consists of k shared queries, we can compute

Ωi =

k∑
j=1

rj
sj
.

The cost of processing a single tree ti, in terms of the total number of aggregate
operations per second, is thus

C(ti) = λ+ EiΩi (1)

where λ is the number of tuples arriving per second (tuple input rate) that represents the
cost at sub-aggregation level.

And the total cost of a query plan Q with m trees is simply the sum of the costs of
the individual trees.

C(Q) = mλ+

m∑
i=1

EiΩi (2)

C(Q) represents the total number of aggregations per second for all ACQs. The formal
problem statement is then as follows.

Given a set of n ACQs, find a query plan (a partitioning of the ACQs) that
minimizes total cost.

To recap, the cost of one execution tree comprises two parts: the cost of the sub-
aggregations (at the intermediate aggregation step) plus the cost of final aggregations
at the final aggregation step. When queries in two trees are merged into one execu-
tion tree, the number of necessary intermediate (sub) aggregations decreases, because
partial aggregates that previously needed to be computed for both trees independently,
now can be computed just once and reused in answering both queries. However, the
number of final aggregation operations increases: first, because the number of edges
per second (edge rate) in the resulting execution tree will be at least the maximum edge
rate of individual trees, and second, because now the final aggregations will need to be
performed for each edge, for each query. The goal of sharing processing of queries is
to maximize savings during the sub-aggregation step while minimizing the costs at the
final-aggregation step.

2.4 Weave Share

Weave Share (WS) is a recently proposed greedy heuristic algorithm for computing
query plans [7]. Guirguis et al. first formalized the notion of weavability of multiple
queries as the ratio of the number of edges common to multiple ACQs to the total
number of edges in the composite slide. When several queries share partial aggregation
operations, the more common edges between ACQs that exist in their composite slide,
the more weavable they are. Naturally, to maximize the benefit of sharing ACQs, either
the shared ACQs should exhibit a high degree of weavability or the total overlap factor
(number of total final aggregation operations performed on shared fragments) should be
low, or both. Weave Share considers both of these factors in optimizing the processing
of ACQs. Each iteration of WS involves one merge step, where the queries of two
separate execution trees are combined into one tree, so that the two previously separate
groups of shared queries are now all shared together in one execution tree. There may
be up to n − 1 iterations, and the total time required by the WS algorithm is O(n2),
where n is the number of ACQs.

The Weave Share Algorithm The input to the algorithm is the original set of n ACQs,
and the output is a query plan, or a partition of the ACQs into m ≤ n disjoint groups
(execution trees).

1. Create n trees, one ACQ per tree.
2. Consider all possible pairs of trees. For each pair of trees, compute the reduction in

cost that would be achieved if queries belonging to both trees were merged.
3. Find the maximum reduction in cost over all possible pairs of trees. Ties may be

broken arbitrarily.
4. If this value is positive (i.e. it is indeed a cost-reduction), merge these trees and

repeat from step 2. Otherwise (the value is not positive), terminate the algorithm.

Experimental Performance of Weave Share Experimental results by Guirguis et al. [7]
demonstrate that the query plans produced by Weave Share outperform query plans
generated by other common algorithms, such as No Share (in which partial aggregation
results are not shared), Random (in which random trees are iteratively merged until

there is no longer an improvement), Local Search (that explores the solution subspace
by starting with a random partition of ACQs into trees and iteratively moving single
ACQs between trees), Shared (in which all queries constitute a single execution tree)
and Insert-then-Weave (in which each individual query is inserted one-by-one into the
tree that it weaves best with). For different input parameters (λ and n) the Weave Share
plan had a cost as much as 40 times better than other plans. For small problem instances,
exhaustive search was used to find the optimal query plan; Weave Share was able to find
these plans in all but one instance.

The evaluation of Weave Share’s performance was conducted on a synthetic data
stream, to allow control over input parameters and cover the most likely real scenar-
ios. Although Weave Share is shown to outperform other strategies on a synthetic data
stream, there is no guarantee on the quality of the solution produced by the algorithm.
Extensive comparison of Weave Share with an optimal solution produced by exhaustive
search is not feasible for any practical number of ACQs. In short, Weave Share performs
better than the alternative heuristic algorithms but not much is understood about how
many more aggregations per second the query plan produced by Weave Share requires
compared to the number of aggregations per second in an optimal query plan.

3 A Cost-savings Approximation

In this section, we give a guarantee on the amount of cost-savings that Weave Share
achieves. The outcome of the Weave Share algorithm features a decrease in the total
cost of the query plan compared to the no-share query plan in which each query is
executed by itself. It is this improvement, or savings, achieved by the Weave Share
algorithm that we seek to bound. We find this measure of maximizing cost-savings
appealing, as it focuses on the achievements of the algorithm compared with that of the
optimal solution. In contrast, under the umbrella of the objective of minimizing total
cost, we would include costs that are inherent and unavoidable, to both WS and OPT.

We first introduce some notation. Recall that a query plan is a partitioning of the
queries into execution trees. We refer to an execution tree that consists of more than one
query as a multi-tree. We will indicate an execution tree by listing its ACQs in square
brackets, for example: [q1, q2, . . . , qk] refers to the multi-tree composed of queries
q1, . . . , qk merged together, and [qi] refers to an execution tree with a single stand-
alone query qi. We can indicate a query plan using a set of such lists. For example,
{[q1], [q2, q3], [q4]} is a query plan with three execution trees, one with only query q1,
another with two merged queries q2 and q3, and another with only query q4.

Let Q denote the query plan produced by the Weave Share algorithm, and m denote
the number of execution trees in Q. Let Q∗ denote an optimal query plan (one that
minimizes total cost over all query plans), and m∗ denote the number of its execution
trees. Let N denote the no-share query plan, which has n execution trees, one for each
stand-alone ACQ. Let µ be the number of merges made by WS to reach Q, and µ∗ be
the number of merges required to reach Q∗ from N . Note that

n = m+ µ = m∗ + µ∗, (3)

since each separate tree represents a potential merge that did not take place.

For any query plan X we denote the difference between the cost of the no-share
plan and the cost of X by R(X) = C(N) − C(X). Note that if R(X) is positive, it
represents a reduction, or savings, in cost compared to the no-share plan.

We are now ready to state the central theorem of this work.

Theorem 1. The amount of savings achieved by the Weave Share query plan is at least
a quarter of the savings achieved by an optimal query plan, i.e.,

R(Q) ≥ R(Q∗)/4,

under the following three conditions:

– the range and slide of each query coincide (i.e., ri = si for each query qi)
– the tuple input rate λ exceeds twice the edge rate of any tree comprised of exactly

two ACQs (i.e., λ ≥ 2E[qi,qj] for any i, j ∈ {1, . . . , n}, i 6= j)
– the number of merges made by WS in Q is at least half the number of merges made

in Q∗ (i.e., µ ≥ µ∗/2)

We note that the special case of the problem enforced by the above three conditions
is quite natural and applicable to practical settings. It is common in real-world applica-
tions for query windows to "tumble" [10], with disjoint windows that cover the entire
input. The assumption on the size of λ is quite modest for most practical settings. And
the third condition, after applying equation (3), is equivalent to m ≤ n/2 + m∗/2.
This condition has easily held in all previous WS experiments [7, 6] that have been
conducted.

To prove this theorem, we first establish two useful lemmas, both of which provide
interesting insight into the nature of sharing and merging.

3.1 Savings dilution

Our first lemma demonstrates that under some practical assumptions, there is some
degree of "dilution" in cost-savings when merging a query into a multi-tree compared
with merging two stand-alone queries. Specifically, we consider the restricted version
of the problem where for each query its range and slide coincide (r = s). Moreover,
assume that the tuple input rate λ exceeds twice the edge rate of any tree comprised of
exactly two individual queries, i.e. λ ≥ 2E[a,b] for any two queries a and b. Under these
circumstances, we show that the savings achieved by merging two individual queries
together is at least half the savings achieved by merging an individual query into a
multi-tree.

Let C([a], [b]) denote the total cost of processing the two queries a and b separately,
with no sharing. Let C([a, b]) denote the total cost when processing the two queries a
and b as one, merged, execution tree (sharing their partial aggregates). Let r([a], [b]) =
C([a], [b])−C([a, b]), the cost-savings, or reduction in cost, from merging the two trees
[a] and [b]. More generally, let r(t1, t2) denote the cost-savings from merging the two
trees t1 and t2, either or both of which may be a multi-tree.

Lemma 1. Consider an execution tree of k queries [q1, q2, . . . , qk]. Assume ri = si for
all queries i = 1 . . . k. Further assume λ ≥ 2E[qi,qj] for any i, j ∈ {1, . . . , k}, i 6= j.
Let S be any subset of {1, . . . , k}. For any a, b, c ∈ S,

2r([qa], [qb]) ≥ r([qS−c], [qc]),

where qS−c denotes the multi-tree comprised of all queries in S other than c.

Proof. To improve readability, we will write Ea for E[qa] and Eab for E[qa,qb]. We will
similarly simplify the Ω terms. Since ri = si for all i, we have Ωa = Ωb = Ωc = 1.
We begin by noting that the savings achieved by merging qa and qb is r([qa], [qb]) =
λ+Ea+Eb−2Eab. The savings achieved by merging qc and qS−c is r([qS−c], [qc]) =
λ+ (|S| − 1)ES−c + Ec − |S| · ES .

Note that using our assumption about λ, we have λ + ES ≥ Ec + 2Eab. Hence,
since Ea + Eb ≥ Eab, we can say λ+ 2(Ea + Eb)− 4Eab ≥ Ec − ES . From this we
can conclude, using ES ≥ ES−c, that 2(λ+Ea+Eb− 2Eab) ≥ λ+(|S|− 1)ES−c+
Ec − |S|ES , or equivalently, that 2r([qa], [qb]) ≥ r([qS−c], [qc]).

3.2 The OPT-sequence

Our second lemma will involve a careful WS-based specification of Q∗, our optimal
query plan, which will ultimately allow us to map the merges made by WS to increments
of savings in cost achieved by Q∗. We begin with a helpful observation.

Observation 2 Consider an execution tree consisting of several ACQs. The total cost
of this tree, and thus the savings achieved by merging the constituent queries together
into the tree, does not depend on the order in which queries are merged into the tree.

For an illustration, refer to the Example 2 in the Appendix.

Construction of OPT-lists Based on the above observation, any valid query plan, in-
cluding Q∗, can be represented as a specific sequence of steps whereby each step con-
stitutes merging an individual query either with another individual query or into a tree
of queries. In other words, each tree of Q∗ can be represented as an ordered list of
constituent queries, and the order of list elements (from right to left) defines a specific
order of merges for that tree. For instance, for four queries a, b, c, and d, we can use
the ordered list [qa, qb, qc, qd] to denote the execution tree that is comprised of all four
queries, as well as to indicate the ordered steps of first merging qc with qd, then merging
qb with the tree [qc, qd], then merging qa with [qb, qc, qd].

Below, we describe a procedure for constructing an ordered query list for each tree
of Q∗. We will refer to each ordered list of queries as an OPT-list, and the execution
tree to which it refers as an OPT-tree. We will refer to them collectively as the set of
OPT-lists, or just OPT for short. This representation ofQ∗ will allow us to compare the
savings earned by the Weave Share solutionQ to that ofQ∗. Recall thatm (respectively,
m∗) is the number of trees in the final Weave Share plan Q (respectively, Q∗).

Note that by following this procedure, the OPT-lists may get fully populated before
Weave Share finishes (if the final merges of WS are between existing multi-trees). And

1: initialize all m∗ OPT-lists (one list for each tree of Q∗) to empty
{now consider the steps of Weave Share algorithm on the set of queries, one by one}

2: for each merge i of the Weave Share algorithm, i = 1 . . . µ do
3: if merge i is between two individual queries then
4: let the two queries be called x and y
5: add query x to the end of the OPT-list it belongs to
6: add query y to the end of the OPT-list it belongs to
7: else if merge i is between a multi-tree and a single query then
8: add that query to the end of the OPT-list it belongs to
9: else {merge i is between 2 multi-trees}

10: the queries involved have already been added in a previous iteration
11: end if
12: end for

conversely, Weave Share may finish before the OPT-lists get fully populated, if WS
leaves many queries as stand-alone queries. In the latter case, the incomplete OPT-lists
may be populated in an arbitrary order.

Construction of OPT-sequence The sought-after final sequence of merges leading to
Q∗ can be attained by considering the OPT-lists in arbitrary order and walking through
each tree-list from right to left, merging one query at a time into its corresponding final
OPT-tree. Recall that µ∗ denotes the number of merges in OPT. In executing this OPT
sequence of merges, we are effectively starting at the query plan N where there is no
sharing—all queries are in their own individual execution trees—and proceeding step
by step to the optimal query plan Q∗. After each merge, we are at an intermediary
query plan, where some queries that OPT will eventually merge are still individual
queries, and some of the final OPT-trees are not complete. We denote this sequence
of intermediate query plans (N = Q0, Q1, . . . , Qµ∗ = Q∗), numbered in the order
specified by the procedure above, and we refer to it as the OPT-sequence. We will
abuse this term and also use it to refer to the sequence of merges made by OPT in
proceeding from N = Q0 to Q∗.

Consider the change in cost between each adjacent pair of query plans in the OPT-
sequence. Let us define for j = 1 . . . µ∗, each change in cost r∗j = C(Qj−1)− C(Qj).
We now sort the r∗j ’s in non-increasing order and renumber them so that

r∗1 ≥ r∗2 ≥ r∗3 ≥ . . . ≥ r∗µ∗ . (4)

A given WS merge (either between two individual queries, a query and a tree, or
two trees) is said to map to a query in an OPT-list if, upon executing the merge, that
query is added to an OPT-list in the above procedure. The following lemma is implicit
in the construction procedure of the OPT-lists. For completeness we give a proof.

Lemma 2. Each merge of Weave Share maps to at most two queries in the OPT-lists
defined above. And each query in an OPT-list is only mapped to once.

Proof. If at merge i, Weave Share merges two existing multi-trees, then merge i of
Weave Share adds no new queries to the OPT-lists. If merge i involves one stand-alone

query (in the case of merging a stand-alone query into a multi-tree), then it adds one
query to an OPT-list. If merge i involves two stand-alone queries then it adds two
queries to one or two OPT-lists. Hence each Weave Share merge maps to at most 2
of OPT’s merges. Each query is only added once because the procedure specifies that
queries are added to an OPT-list only the first time they are "touched" by Weave Share:
when they are still stand-alone queries.

Loosely speaking, the construction procedure of the OPT-sequence above accounts
for each r∗j using a WS merge. It effectively ensures that each WS merge precludes at
most two of OPT’s merges in the OPT-sequence defined above.

3.3 Proof of main theorem

We are now ready to prove Theorem 1. The idea of the proof is to break both OPT
and Weave Share down into a sequence of merge-steps and then compare the savings
achieved by Weave Share at each step to some corresponding savings achieved by OPT.
This allows us to compare the total savings achieved by Weave Share with the total
savings achieved by OPT.

Proof. First we handle a formality of bookkeeping. Recall that by assumption we have:

µ ≥ (1/2)µ∗ (5)

Further recall that each merge of WS may map to 2 queries in OPT, which means WS
may be making more merges after all of the queries in OPT have been mapped. Hence
we simply define r∗j = 0 for all j = µ∗ + 1 . . . 2µ.

We now proceed with our main argument. We denote the reductions in cost of each
WS merge to be r1, . . . , rµ, indexed by the order of merges executed by the Weave
Share algorithm. That is, ri is the savings earned from the ith merge of the Weave Share
algorithm. The bulk of the proof will be dedicated to showing that for any i = 1 . . . µ,
we have 2ri ≤ r∗2i−1. We begin with i = 1.

Savings at the first iteration of Weave Share Weave Share starts by merging two individ-
ual queries. The savings achieved at this step is at least half of the maximum individual
savings achieved by OPT, i.e. 2r1 ≥ r∗1 . Indeed, if r∗1 is achieved by merging an in-
dividual query into a multi-tree, the inequality follows from Lemma 1 in Section 3.1.
If r∗1 is achieved by merging two stand-alone queries, then from the greedy nature of
Weave Share it follows that r1 ≥ r∗1 . Note that by definition of the OPT-sequence, r∗j
was not achieved by merging two multi-trees, for any j = 1 . . . µ∗. Hence, we obtain
2r1 ≥ r∗1 . This also implies 2r1 ≥ r∗2 , due to the re-numbering in (4).

We refer the reader to Example 3 of the Appendix, which shows the argument for
step i = 2 explicitly to help build intuition and make the following more concrete.

Savings at ith iteration of Weave Share We now generalize the argument for savings ri
that is obtained at the ith merge of Weave Share. We will demonstrate that 2ri ≥ r∗2i−1,
and hence that also 2ri ≥ r∗2i (since r∗2i−1 ≥ r∗2i). Note that if 2i−1 > µ∗ then the claim
is trivially true, since then r2i−1 = 0. Hence we restrict our attention to the case that

2i−1 ≤ µ∗. Since Weave Share is greedy, ri is at least the savings that we can get from
any merge of two stand-alone queries that are still available just before the ith merge of
Weave Share. So let us consider the quality of the merges that are still-available to WS
at this juncture.

Recall the definition above of xj and yj for any r∗j where j ≥ µ∗. At merge i of
Weave Share, either:

1. x2i−1 and y2i−1 are still stand-alone queries, available to be merged by Weave
Share, or

2. Weave Share has already used either x2i−1 or y2i−1 in one of its earlier i−1 merges.
In this case another pair of queries (x1 and y1, x2 and y2,. . ., or x2i−2 and y2i−2)
are still available to be merged. We know this because by Lemma 2, a total of at
most 2(i− 1) OPT queries have been mapped by the first i− 1 WS merges. By the
pigeon hole principle, we must still have at least one pair of queries (x1 and y1, x2
and y2, . . . , or xj−1 and yj−1) that are unmapped, i.e., stand-alone queries thus far
untouched by WS.

Let us use x and y to denote the pair of queries that are still available to be merged
of these possibilities. By Lemma 1, we know that merging x and y achieves at least as
much reduction in cost as half of the reduction achieved when OPT merged x into the
OPT-tree that x and y are a part of. Therefore, we know that

r(x, y) ≥ 1

2
min(r∗1 , . . . , r

∗
2i−1) ≥

1

2
(r∗2i−1).

We also know by definition of WS that ri ≥ r(x, y). Hence, for i = 1 . . . µ we
have:

2ri ≥ r∗2i−1, and (6)
2ri ≥ r∗2i

We sum up the inequalities in (6) to get 2 · 2(r1 + r2 + . . . + rµ) ≥ (r∗1 + r∗2 +
r∗3 + . . .+ r∗2µ). And then, using inequality (5), we have (r∗1 + r∗2 + r∗3 + . . .+ r∗2µ) ≥
(r∗1 + r∗2 + r∗3 + . . .+ r∗µ∗). Hence we obtain 4R(Q) ≥ R(Q∗).

4 Summary and Open Problems

In this paper we have studied an important optimization problem for efficient sharing of
ACQs for DSMSs. We analyzed a previously proposed greedy algorithm, Weave Share,
which performed extremely well in an experimental study. We show that under some
practical assumptions this algorithm guarantees a 4-approximation to the optimal cost-
savings. Our analysis technique allowed us to elucidate some properties of the effect of
sharing partial aggregates on total cost, and also required an exploration into the struc-
tural properties of an optimal solution. Several open questions remain. Determining
whether there is a tighter analysis of WS, or an algorithm with a better approximation,
are probably the two most immediate. Removing the assumptions required for proving
our approximation may also be possible. An analysis of a follow-up algorithm for the
problem that has been proposed, called Tri-Weave [8], would also be interesting.

References

1. D. J. Abadi, Y. Ahmad, M. Balazinska, U. C etintemel, M. Cherniack, J.-H. Hwang, W. Lind-
ner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B. Zdonik. The design of
the Borealis stream processing engine. In CIDR, 2005.

2. Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sang-
don Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a new model and
architecture for data stream management. VLDB Journal, 2003.

3. Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru Nishizawa,
Justin Rosenstein, and Jennifer Widom. Stream: The stanford stream data manager. In
SIGMOD, 2003.

4. Harold N. Gabow. Data structures for weighted matching and nearest common ancestors with
linking. In Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms,
SODA ’90, pages 434–443, Philadelphia, PA, USA, 1990. Society for Industrial and Applied
Mathematics.

5. Thanaa M. Ghanem, Moustafa A. Hammad, Mohamed F. Mokbel, Walid G. Aref, and
Ahmed K. Elmagarmid. Incremental evaluation of sliding-window queries over data streams.
IEEE TKDE, 2007.

6. Shenoda Guirguis. Scalable Processing of Multiple Aggregate Continuous Queries. PhD
thesis, University of Pittsburgh, 2011.

7. Shenoda Guirguis, Mohamed A. Sharaf, Panos K. Chrysanthis, and Alexandros Labrini-
dis. Optimized processing of multiple aggregate continuous queries. In Proceedings of
the 20th ACM international conference on Information and knowledge management, CIKM
’11, pages 1515–1524, New York, NY, USA, 2011. ACM.

8. Shenoda Guirguis, Mohamed A. Sharaf, Panos K. Chrysanthis, and Alexandros Labrinidis.
Three-level processing of multiple aggregate continuous queries. In ICDE, pages 929–940,
2012.

9. Moustafa A. Hammad, Mohamed F. Mokbel, Mohamed H. Ali, Walid G. Aref, Ann Christine
Catlin, Ahmed K. Elmagarmid, Mohamed Y. Eltabakh, Mohamed G. Elfeky, Thanaa M.
Ghanem, Robert Gwadera, Ihab F. Ilyas, Mirette S. Marzouk, and Xiaopeng Xiong. Nile: A
query processing engine for data streams. In ICDE, 2004.

10. Sailesh Krishnamurthy, Chung Wu, and Michael Franklin. On-the-fly sharing for streamed
aggregation. In SIGMOD, 2006.

11. Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. No pane, no
gain: efficient evaluation of sliding-window aggregates over data streams. SIGMOD Record,
2005.

12. Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. Semantics and
evaluation techniques for window aggregates in data streams. In SIGMOD, 2005.

13. K.V.M. Naidu, Rajeev Rastogi, Scott Satkin, and Anand Srinivasan. Memory-constrained
aggregate computation over data streams. In ICDE, 2011.

14. Streambase, http://www.streambase.com, 2006.
15. System S, http://domino.research.ibm.com, 2008.

Appendix

In the Appendix we provide some helpful examples to further illustrate the concepts
presented in the main paper. We also discuss exact solutions to two practical variations
of our optimization problem that was defined in Section 2.3.

Examples

Example 1: trade-off between costs at the partial and final aggregation levels Consider
an example instance [7] with two ACQs with ranges r1 = 12, r2 = 10 seconds and
slides s1 = 9, s2 = 6 seconds. Note that the fragments of ACQ 1 are g1 = 3, g2 = 6,
and the fragments of ACQ 2 are g1 = 4, g2 = 2. In unshared partial aggregation, the
sub-aggregation operators of the first ACQ will produce 2 fragments every 9 seconds,
while that of the second ACQ will produce 2 fragments every 6 seconds. We refer to the
number of fragments generated per second as the edge rate, and denote it E1 = 0.22,
E2 = 0.33 edges per second. With no sharing, the total final aggregation operations per-
formed per second is E1 +E2 = 0.55. On the other hand, if shared partial aggregation
is used, then we compose the two slides to form a composite slide of length s′ = 18,
with edges at times 3, 4, 6, 9, 10, 12, 16, and 18 seconds. This gives a combined edge
rate of E′ = 8/18 = 0.44. Since each ACQ has its own final aggregation operator,
the total final aggregation operations performed per second in this case has increased to
0.88.

Example 2: Illustration for Observation 2 Consider three queries q1, q2, q3. The total
cost of the tree [q1, q2, q3] can be expressed as: C([q1, q2, q3]) = λ+E · (r1s1 +

r2
s2

+ r3
s3
),

where ri and si, i = 1, 2, 3 are the range and slide of query qi. The values λ and ri
si

stay constant and do not depend on the order of merges. The value E represents the
edge rate of the tree. It is computed as the number of edges in a composite slide for the
tree divided by length of the composite slide. The length of the composite slide is equal
to the least common multiple of s1, s2, s3 and clearly does not depend on the order of
merges. The number of edges depends on how many prime divisors si and ri mod si
share, but not on the order of computation.

Example 3: Savings at the second iteration of Weave Share To build intuition regarding
savings obtained at ith iteration of Weave Share, here we explicitly write out how the
savings obtained at the second iteration can be bounded. The savings achieved by the
second merge of Weave Share is denoted by r2. We will now demonstrate that 2r2 ≥ r∗3 ,
and hence that 2r2 ≥ r∗4 (since r∗3 ≥ r∗4).

Since Weave Share is greedy, r2 is at least the reduction that we can get from any
still-available merge. So let us consider the quality of the merges that are still-available
to WS before it makes its second merge to achieve a savings of r2.

Recall the OPT-sequence (Q0, . . . , Qµ∗) that was created by following the proce-
dure in Section 3.2. Further recall that r∗j for j ≤ µ∗ is defined to beC(Qj−1)−C(Qj),
and this reduction in cost r∗j was derived from merging a single query into an existing
OPT-tree. We will refer to this query as xj , and the last query that was added to the

same OPT-list before xj will be referred to as yj . I.e., xj and yj are adjacent in some
OPT-list. We will use the terminology that xj and yj are the queries of r∗j .

We know that currently, before the second merge of Weave Share, either:

– x3 and y3 are still individual, unmerged queries. They can potentially be merged
by Weave Share

– or, if Weave Share’s first merge (with savings r1) already mapped to either x3 or
y3, then either the two queries of r∗1 (x1 and y1) or the two queries of r∗2 (x2 and
y2) are still unmapped, and hence available to be merged with each other.

This is true because each WS merge maps to at most 2 queries in OPT, and each
query in OPT is mapped to at most once (Lemma 2). So at most 2 of OPT’s merges
are precluded by the first WS merge, leaving at least one pair of queries xi and yi,
i = 1, 2, 3, available to be merged. Denote by x and y the two queries that are still
available to be merged of these 3 pairs of possibilities.

By Lemma 1 we know that merging x and y achieves at least as much reduction in
cost as half of the reduction achieved when OPT merged x into the OPT-tree that x and
y are a part of. Hence, we can say

r(x, y) ≥ 1

2
min(r∗1 , r

∗
2 , r
∗
3) ≥

1

2
(r∗3).

We also know by the greedy nature of Weave Share that r2 ≥ r(x, y). Taken to-
gether, we have: 2r2 ≥ r∗3 .

Query pairing

Consider a restricted version of the optimization problem, in which each tree of the re-
sulting query plan can have at most two queries in it. This version can be solved exactly
and in polynomial time by reducing it to finding a maximum matching in a weighted
undirected graph. Namely, we construct a graph in which each vertex corresponds to
one input query. For every pair of vertices, an edge is added between them if sharing
the corresponding queries leads to savings in processing cost. There are n vertices and
O(n2) edges. The weight of the edge is the reduction in cost achieved by sharing the
two queries.

An optimal query plan is found by maximizing the sum of savings achieved by
individual merges; this is equivalent to solving a maximum weighted matching problem
on the constructed graph: select a set of non-adjacent edges in a weighted graph so that
the sum of their costs is maximized. After a graph corresponding to a set of queries is
constructed, the maximum matching problem can be solved in O(n3) time by Gabow’s
algorithm [4].

Continuous query sharing

Another interesting variation is to consider an ordered sequence of ACQs and look for
a query plan in which trees are formed from contiguous queries in order. For instance,
if an "expiration date" is associated with each ACQ, the input sequence may be ordered

by this expiration date. This problem can be solved exactly and in polynomial time via
a dynamic programming solution.

Let ci be the value associated with each ACQ qi that represents the minimum cost of
the query plan for a subsequence of ACQs {qi, . . . qn}. These values can be computed
in right-to-left order: cn is assigned the cost of executing qn; for other values of i,

ci = min
i≤j≤n

{cost(qi, . . . , qj) + cj+1},

where cost(qi, . . . , qj) denotes the cost of the tree containing a contiguous subsequence
of queries qi, . . . , qj .

The value c1 associated with q1 represents the cost of the least expensive query plan.
To restore the actual partition of queries into trees, we associate a variable πi with each
query qi and compute it in parallel with computing ci, storing in πi the index j, which
yields the minimum cost in computation of ci. That is, πi holds the index of the "right
boundary" of the tree that ACQ qi is a part of.

Although this variation is somewhat restrictive in that it only allows contiguous
subsets of ACQs to form trees, the advantage of this solution is that it adapts easily to
query expiration: when, say, the first query expires and needs to be removed from the
plan, the cost of the new solution is already stored in c2 and the actual solution can be
easily restored using π2.

