
* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

47

EXPANDING CS1: APPLICATIONS ACROSS THE LIBERAL

ARTS*

Bridget Baird and Christine Chung
Department of Computer Science

Connecticut College
New London, CT 06320

860 439-2008
bbbai@conncoll.edu

ABSTRACT
This paper will describe how applications in a variety of disciplines can
enhance the teaching of the CS1 course. Examples will be given from a range
of disciplines, including mathematics, economics, linguistics, history, biology,
art and music. The applications will be linked to the computer science concepts
being discussed. Such an approach broadens the appeal of the introductory
course and also teaches students valuable problem solving skills.

INTRODUCTION
There have been a variety of approaches for teaching introductory computer science

that have been used to entice students into the discipline. Some of these include the use
of animation [10], film [7], or web design [2]. Other approaches have integrated the
natural sciences into the computer science curriculum [1, 5]. At the same time that
computer science is broadening its reach into other disciplines, there has also been an
increased emphasis on problem solving techniques in the CS1 course. Some of these
techniques have been quite extensive and complex [4, 9]. Others stem from the research
by Margolis and Fisher [8] that shows that women are more likely to major in computer
science if they can see the tangible applications and ways in which computer science can
be used. Problem-solving activities also seem to increase the self-confidence of women
taking CS1 [6]. Since the last Taulbee survey [3] shows that 11.8% of undergraduate
degree recipients were women and nearly two-thirds of the undergraduate majors were
white and non-Hispanic, it is imperative that efforts continue to be made to broaden the

JCSC 25, 6 (June 2010)

48

appeal of CS1 to underrepresented groups. Thus, using problem solving across a wide
range of disciplines is a natural approach.

At smaller colleges the CS1 course has multiple audiences: serving as a base for
those desiring to major or minor in CS but also serving as an introduction to the discipline
for students who might only take one or two courses in the subject. Thus one of the first
goals of the course is to produce a challenging but accessible and interesting course for
all audiences. Another goal for this course, obviously, is to introduce basic programming
concepts in computer science. Discussions at the college also focus on two additional
goals. The first is to emphasize the importance of computer science in solving a variety
of interesting, practical problems; students should become active problem solvers
themselves. And then the final (implicit) goal is to interest a broader group of students
in the joys of computer science; in the best case they are enticed to become majors and
active practitioners and in any case all students finish the course with a greater
appreciation for the discipline and a confidence in their abilities to apply these concepts
to their own fields.

The language that is used to teach the introductory course is Python. This language
seems particularly well suited to meeting the goals of this course: it is relatively easy to
teach and learn, it does not have a lot of jargon, the programming environment is free and
thus promotes continued use beyond the end of the course, and there is a wide range of
modules that provide accessibility to a host of applications.

CONCEPTS AND APPLICATIONS
As the basic concepts of computer science are taught and as students develop

proficiency with the language, an effort is made to show these concepts in use, linking
them to practical applications. The choice of applications reflects teaching in a liberal arts
college, where students from all disciplines take the introductory course. The institution
has a long history of supporting interdisciplinary collaborations and includes a number
of centers, including one in arts and technology (which requires this CS course). Thus the
students not only come from a variety of backgrounds but also have a certain expectation
about combining different fields in their studies. Table 1 shows the broad links among
concepts and applications that are used in this course.

CCSC: Northeastern Conference

49

String Processing for Text Analysis
One of the strengths of Python is that it allows for early accessibility to file and

string processing. These concepts and an early introduction to conditionals and loops
mean that within the first few weeks of class, students can write intriguing and interesting
applications involving large texts.

One cross-disciplinary application is analyzing texts of famous literary works
(which can easily be obtained online from websites like www.gutenberg.org). The
students can study literary styles of different authors (average sentence length, average
word length, commonly used words or phrases), or they can alternatively perform word
processing tasks on the texts (find/replace, spell check, etc.). These same techniques lend
themselves to analyses of historical documents such as diaries, census information and
historical texts.

Another compelling application is the problem of analyzing presidential or
campaign speeches. For example, students can be given the task of comparing the 2008
convention speeches of Senators Barack Obama and John McCain. They can be asked to
compare the number of times each candidate mentioned specific words, drawing
conclusions about their priorities or campaign styles. They could also easily modify the
speech to have all instances of a certain word replaced by another, creating a new file
with an interestingly altered version of the speech. This particular application happens
during the third week of class, giving students an early idea of the extensive and
interesting programming concepts at their disposal.

Later in the course, when students have learned some basic graphics, and have been
taught arrays/lists, searching and sorting, they can apply these skills to writing a program
to generate word clouds. A word cloud is a graphical representation of the words from
a body of text wherein more frequent words from the text are displayed in larger fonts,
providing an interesting visualization of the given text. Such visualizations have recently
been popularized by a number of internet websites. This engaging and multi-faceted task
requires students to exercise skills such as processing text from a file, counting word
frequencies, sorting the words in order of frequency (using parallel arrays or Python
dictionaries), searching for and removing any “stop words” (less important words that
should not be included in the word cloud such as “the” and “is”), and displaying them in
a graphical window in a pleasing and randomized fashion so that more frequent words
appear larger and closer to the center.

Functions and Recursion for Graphics and Animation
A nice way to illustrate the power and flexibility of parameterized functions is by

using graphics. A basic beginning exercise might be to ask the students to draw a simple
shape (like a square or circle) whose color is specified as a parameter. Other properties
of the shape can then of course be parameterized to teach students how to create functions
with multiple parameters. The use of a graphics package to create custom shapes using
student-defined functions transitions nicely into the introduction of boolean functions,
which can be used to compute various geometric properties of the shapes being drawn.

JCSC 25, 6 (June 2010)

50

Once students understand basic graphics (which also gives them an early taste of
object-oriented programming) and loops, it is instructive to have them create graphical
animations. Even simple animations are useful for teaching a number of lessons: they can
again be used to help students practice writing modular and parameterized functions (e.g.,
speed or direction of the animation can be parameters), they can be used to show creative
uses for loop counters (at this point it is still early in the course and students are still not
quite comfortable with the idea of using the built-in definite-loop counter variable within
the body of the loop), but it also gives students a sense of the processing speed of the
computer. While they may feel many other tasks could be done manually (if slower),
animation exercises can concretely affirm to them that there are tasks where the role of
the computer is truly indispensible.

More complicated graphics introduce visualization of data. By using graphics as
well as functions with parameters, students are asked to take actual data sets from
economics (such as census information, employment statistics, etc.) and decide how best
to visually impart the data. They often choose data which has particular meaning to their
own interests. Although they produce fairly complicated and interesting graphics, this is
still a topic that occurs quite early in the course, in the first month.

Students start out in the course writing console applications, and in that setting it is
naturally harder for them to relate to the context of the program’s flow (as most students
have only used applications with graphical user interfaces). Thus, giving them an early
chance to create a graphical user interface with clickable buttons creates a more familiar
user-setting that helps to motivate indefinite loops and event-driven programming
techniques. Because of their extensive experience as users of GUIs, students can fairly
easily grasp the concept of a user’s button-click driving the control of program flow.

Recursion is often a challenging concept for students. An engaging way to illustrate
the power of recursion and allow students to really experience it is to have students create
drawings of fractals. Using a simple graphics package, students can create a
straightforward program that draws straight lines and keeps track of changes in direction.
Then, after some practice with simpler recursive images, the students can be given the
task of creating more complex, well-known and beautiful fractals, such as the Koch
snowflake and Sierpinski Triangle. They can also be given the opportunity to
create/devise their own fractal drawings.

Nested Loops and Modules for Image and Sound Processing
Image processing is an appealing and convenient way to not only incorporate art

into an introductory course, but also to demonstrate nested looping to students. Students
are able to get a concrete grasp for the purpose and structure of nested loops when they
can physically see each of the pixels of a two-dimensional image being processed.
Interesting applications for the students include: changing all pixels of a certain color in
an image; analyzing paintings (was Picasso’s Blue Period really “blue”); changing the
hue, brightness, or saturation of images; and doing some basic pattern recognition of
images by finding outlines of objects.

Sound processing of wav and MIDI files presents more opportunities to illustrate
the power of computer programs to manipulate information. It also demystifies the

CCSC: Northeastern Conference

51

structure of wav files, showing them to be collections of bytes that can be controlled and
changed. Some of the programs for this application include generating simple songs and
tunes, doing simple analyses of wav files, and altering wav files (for example, changing
the volume).

As students look at the quantity of data necessary for pixel information (and then
extrapolate to video) and also look at the size of wav files, this presents an opportunity
to talk a bit about compression methods, how important they are, and how crucial good
algorithms become. The processing of images and sounds also presents an opportunity
to show the power and convenience of external, already-written modules. Students not
only learn how to interface with these modules (reinforcing the versatility of functions
and parameters, the importance of modular programming, as well as object-oriented
programming concepts like encapsulation), but also realize the potential of tapping into
a well-established but evolving body of knowledge.

Pseudorandom Numbers for Games and Simulation
When programming a game or simulating game play, there is a natural need for

random number generation. With this motivation, incorporating pseudorandom number
concepts into the curriculum becomes natural.

The famous Monty Hall problem is a great application for demonstrating the power
of simulation using random numbers. In it, the game show host, Monty Hall, asks the
game show contestant to choose one of three doors. Only one of the doors has a prize
behind it. After the contestant chooses a door, Monty opens one of the doors not chosen
by the contestant that also does not have the prize behind it. He then gives the contestant
the chance to change his/her mind about which door s/he chose. It is well known and
easily shown (if counter-intuitive) that the contestant is better off switching his/her choice
of door. The students can create a program to simulate this famous game show and via
simulation compute the likelihood of winning when the contestant chooses to stick with
his/her original choice compared to when s/he switches. It is a nice way to affirm a
counter-intuitive theoretical result for introductory-level students.

There are many other games and simulations that illustrate uses of probability,
functions and parameters and user interaction. Some of the simulations used in this course
have included Black Jack, Monte Carlo simulations for estimating pi, baseball
simulations to analyze the occurrence of “streaks” and “batting slumps,” and tennis
simulations. As students develop reasonably complicated games, there is also an
opportunity to discuss software development, top-down and bottom-up design, and the
importance of planning in order to write a cohesive program. Students are required to
incorporate these concepts in their large, final project, which is on a topic of their own
choosing.

Object-Oriented Programming for Genetics and Biology
Object-oriented techniques enter the CS1 course in many places: the structure of

Python itself, string processing and file manipulation, introduction of graphics, game
simulations, etc. Another place where this concept is introduced to the students is in a

JCSC 25, 6 (June 2010)

52

lovely application in genetics. Genomes are composed of DNA molecules which contain
sequences of millions of bases (A, G, C, T). These molecules contain chromosomes,
which in turn contain genes. It turns out that genes can be identified by using
straightforward string processing techniques (they are subsequences with certain easily
identifiable starting and stopping codons). This topic presents an opportunity to talk about
classes, inheritance and methods for those classes. Data for this application are taken
directly from the National Center for Biotechnology Information (NCBI) website.
Students are able to download strands of DNA and then pick off the genes. They can then
compare genes in different organisms, looking for identical ones or ones that are similar.
Once again they are able to see both the computing power that is necessary for such
applications but also the possibilities for asking and answering interesting questions about
this discipline.

Other areas in science where object-oriented techniques and external data have been
used include environmental research information obtained from colleagues. Often this
information is contained in spreadsheets. In most institutions one can find colleagues who
have data sets that can be mined for interesting conclusions.

Web Crawling for Statistics and Finance
Students bring great familiarity with the web into this class and it is important to

show them how they can write computer programs to tap into this resource. The
applications in this section range from the straightforward (taking data from a single
source) to web crawling (where the program moves from one web site to another). The
simpler applications illustrate the use of current data that is easily found online (such as
stock prices, or data on recent earthquakes from the US Geological Survey) to produce
informative statistics. The more complex programs involve opening a web site and then
using information from that web site in interesting ways, including moving to web sites
contained in its links. These more complicated interactions lead to a discussion of the
complexities of recursion (every computer has limits that can be quickly reached), the
importance of searching and sorting algorithms, and the importance of algorithms in
general. It is a good place to talk about search algorithms, such as Google’s algorithm for
searching the web, and what those mean for computer science.

Sources for Applications

Some of the applications, such as some of the fractal drawings and several of the
simulations involving random numbers, are taken from the text by Zelle [11] that is used
in the course. Many others come from conversations with colleagues. The authors are
happy to share their ideas, experiences and course materials (including labs, homework
and class activities).

CONCLUSION
This cross-disciplinary CS1 curriculum has been created and shaped over several

semesters. It has been well-received and seems to have attracted an increased number of
majors to the computer science department. The fact that the number of female computer

CCSC: Northeastern Conference

53

science majors is greater in our department than in neighboring colleges of comparable
size and quality might also be attributed in part to our introductory curriculum.

The CS1 course is constantly evolving as different kinds of applications are
introduced. In all cases an effort is made to show “real” problems and not artificially-
produced ones. In the future there will be applications that incorporate some of Google’s
applications and other kinds of mashups. Students are very familiar with using many
kinds of Internet applications and it is beneficial for them to see how these services can
be brought to bear under their control in a computer program. Another area being
examined is computational chemistry, where one of the central pieces of software that
allows chemists to study and manipulate visual representations of molecules is written
in Python. Efforts are being made to see if an interface is possible so that students can
write Python modules that plug into the software and manipulate the data. The philosophy
of this CS1 course is that it should illustrate computer science as a dynamic, relevant
discipline with beautiful structures and functional techniques.

It is important that in the setting of a smaller liberal arts college, computer science
is incorporated as much as possible into the liberal arts curriculum, rather than introduced
in isolation from the many other rich areas of study that the students expect to be exposed
to. While students should have the chance to appreciate computer science for its own
sake, it is also vital that students come away from an introductory course with an
understanding that computer science permeates all areas of study and is a fundamental
part of a liberal arts curriculum.

REFERENCES

[1] Adams, J. B., Computational science as a twenty-first century discipline in the
liberal arts. J. Comput. Small Coll. 23 (5), 15-23, 2008.

[2] [2] Baird, B., Web design: interface to the liberal arts, J. Comput. Small Coll. 21
(6), 14-19, 2006.

[3] CRA Taulbee Survey, Computing Degree and Enrollment Trends 2007-2008,
www.cra.org/info/taulbee, retrieved November 16, 2009.

[4] Faulkner, K., Palmer, E., Developing authentic problem solving skills in
introductory computing classes, Proceedings of the 40th SIGCSE technical
symposium on Computer science education, 4-8, 2009.

[5] Ivanov, L., The N-body problem throughout the computer science curriculum, J.
Comput. Small Coll. 22 (6), 43-52, 2007.

[6] Kumar, A., The effect of using problem-solving software tutors on the self-
confidence of female students, Proceedings of the 39th SIGCSE technical
symposium on Computer science education, 523-527, 2008.

[7] Lim, D., Lights..camera..computer science: using films to introduce computer
science to non-majors. J. Comput. Small Coll. 23 (5), 58-64, 2008.

[8] Margolis, J., Fisher, A., Unlocking the Clubhouse, Women in Computing,
Boston, MA: MIT press, 2003.

JCSC 25, 6 (June 2010)

54

[9] Rao, T. M., Mitra, S., Canosa, R., Marshall, S., Bullinger, T., Problem
stereotypes and solution frameworks: a design-first approach for the introductory
computer science sequence, J. Comput. Small Coll. 22 (6) 56-64, 2007.

[10] Stiller, E., Teaching programming using bricolage, J. Comput. Small Coll. 24 (6),
35-42, 2009.

[11] Zelle, J., Python Programming: an Introduction to Computer Science,
Wilsonville, OR: Franklin, Beedle & Associates, Inc., 2004.

