
Auction-based Admission Control for Continuous
Queries in a Multi-Tenant DSMS

Lory Al Moakar 1‡, Panos K. Chrysanthis 1, Christine Chung 2‡, Shenoda Guirguis 1, Alexandros

Labrinidis 1, Panayiotis Neophytou 1 and Kirk Pruhs 1

1 Department of Computer Science, University of Pittsburgh
2 Department of Computer Science, Connecticut College

The growing popularity of monitoring applications and “Big Data” analytics used by a variety of users will lead
to a multi-tenant data stream management system. This paper deals with the problem of admission control of
continuous queries, where the stream processing resources are sold to the end users. We employ variable pricing
by means of auction-based mechanisms. The admission control auction mechanism determines which queries to

admit, and how much to charge the user for each query in a way that maximizes system revenue. The admission
mechanism is required to be strategyproof and sybil-immune, incentivizing users to use the system honestly.
Specifically, we require that each user maximizes her payoff by bidding her true value of having a query run. We
further consider the requirement that the mechanism be sybil-immune: that is, no user can increase her payoff

by submitting queries that she does not value. Given the above requirements, the main challenges come from the
difficulty of effectively utilizing shared processing of continuous queries. We design several payment mechanisms
and experimentally evaluate them.

Keywords: Data Streams, Multi-Tenant, Admission Control, Game Theory, Auction Mechanisms,
Strategyproof, Sybil-immune

1. INTRODUCTION

The growing need for monitoring applications such as the real-time detection of disease outbreaks,
tracking the stock market, environmental monitoring via sensor networks, and personalized and
customized Web alerts, has led to a paradigm shift in data processing paradigms, from Database
Management Systems (DBMSs) to Data Stream Management Systems (DSMSs) (e.g., [Abadi
et al. 2003; Arasu et al. 2003; Chandrasekaran et al. 2003; Chakravarthy and Jiang 2009; Sharaf
et al. 2008]). In contrast to DBMSs in which data is stored, in DSMSs, monitoring applications
register Continuous Queries (CQs) which continuously process unbounded data streams looking
for data that represent events of interest to the end-user.
There are already a number of commercial stand-alone DSMSs on the market, such as Stream-

base [Streambase 2006], IBM System S [System S 2008], Coral8 [Coral8 2004], Esper [Esper Tech
2006] and MS StreamInsight [Microsoft StreamInSight 2008] aiming to support specific applica-
tions.
We firmly believe that the growing need for monitoring applications and “Big Data” analytics

by a variety of users, will inevitably establish a need for a multi-tenant data stream management
system, and expect the issues relating to outsourcing these services to end users to be particularly
important and challenging.
One such challenge is the admission/pricing of continuous queries submitted by end-users.

Auctions, used for example by Google to sell search engine ad words, are a proven way to both

‡ Authors are listed in alphabetical order. This work was done while the third author was a graduate student at
the University of Pittsburgh.

Authors’ addresses: Lory Al Moakar, Panos K. Chrysanthis, Alexandros Labrinidis, Panayiotis Neophytou and
Kirk Pruhs, Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.; Christine
Chung, Computer Science Department, Connecticut College, New London, CT, U.S.A.; Shenoda Guirguis, Intel
co, Hillsboro, OR, U.S.A..

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

248 · Lory Al Moakar et al.

Figure 1: A DSMS architecture. In the query plan the operators in gray are share operators
between one or more queries.

maximize a system’s potential profit, as well as to appeal to the end-user (client). Instead of a
business selling their services at a set price, an auction mechanism (soliciting bids, then selecting
winners) allows a system to charge prices per client based on what the individual client is willing
to pay. Those who do not get serviced are not denied arbitrarily due to the system’s limited
resources, but instead feel legitimately excluded because their bid was simply not high enough.
And perhaps most compellingly, an auction setting allows the system to subtly control the balance
between overloading their servers and charging the right prices.
In this paper1, we investigate auction-based mechanisms for admission control and variable

pricing of CQs to be serviced by the multi-tenant DSMS. To the best of our knowledge, auction-
based CQ admission control in DSMSs has not been investigated in the literature. Interestingly,
Amazon Elastic Computing Cloud (EC2) [AmazonEC 2009], which utilizes auction mechanisms
to sell capacity, appeared shortly after our initial results were accepted for publication in ICDE
2010 [Al Moakar et al. 2010]. This confirms that our vision was timely and valid.
The typical architecture of a DSMS is depicted in Figure 1. In such a system, users submit

queries to the system, and the query optimizer generates an operator network. This network takes
advantage of shared processing (gray operators in Figure 1 are shared among multiple queries).
In this work we describe a set of policies to be applied at the Query Admission Control compo-

nent, that determines which queries to admit, and how much to charge the users for each query
in a way that maximizes system revenue. Note that in our work, admission control happens at
the query level and not at the tuple level as is the case of load shedding algorithms in DSMSs
[Gedik et al. 2005][Tatbul et al. 2003], which aim at handling overload situations.

Challenges. One of the key challenges in the design of these auction mechanisms is to determine
how to best take advantage of the shared processing between CQs. The fact that some queries can
share resources obfuscates each query’s actual load on the system. Without clear-cut knowledge
of each query’s load on the system, optimally selecting the queries to admit becomes exceedingly
challenging from a combinatorial perspective.
From a business point of view, the most obvious design goal for the admission control mech-

anism is to maximize profit. Another first class design goal for the mechanism is to not be
manipulable by users. Specifically, we desire that the mechanism be strategyproof (also known as
incentive compatible or truthful), which means a client always maximizes her payoff by bidding her
true valuation for having her query run, regardless of what the other clients bid. Auction-based
profit-driven businesses like eBay and Google AdWords attempt to design and use strategyproof
auction mechanisms, even at the expense of potential short-term profit, because when users per-

1A four page version of this paper containing initial results of this work appeared in ICDE 2010 [Al Moakar et al.
2010].

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Auction-based Admission Control for Continuous Queries in a Multi-Tenant DSMS · 249

ceive that the system is manipulable, they have less trust in the system and are less likely to
continue using it. Hence, requiring that the auction based admission control mechanisms be
strategyproof is an investment in the long-term success.
Another way users may manipulate the system, besides not being truthful about their valua-

tions, is by submitting bogus queries. Specifically, a user may increase her payoff by submitting
queries that she has no interest in, in order to ”fool” the system into believing the queries are of
high value. Formally this user behavior is characterized as a Sybil attack [Douceur 2002]. We call
a mechanism that is not susceptible to this kind of manipulation sybil-immune (also known as
false-name proof [Sakurai et al. 1999]). Hence, toward establishing the DSMS center, our ultimate
goal is to design a CQ admission control mechanism that is strategyproof and sybil immune.
In this paper, we develop a number of admission control mechanisms, and to evaluate whether

these mechanisms are strategyproof and/or sybil-immune. We have also experimentally identified
potential tradeoffs in terms of system profit, client payoff and rate of CQ admission. Clearly the
most important of these properties, from the service provider’s point of view, is system profit.
Interestingly, the mechanism that is strategyproof and sybil immune offers the best tradeoff with
respect to profit.

Our Contributions. To summarize, our contributions are:

• We apply techniques and principles from algorithmic game theory to a data streams query
admission control problem.

• We propose multiple pricing mechanisms for a multi-tenant DSMS which adapt to the changes
in the market demand.

• We propose a number of mechanisms for this problem (four natural, greedy mechanisms and
one randomized mechanism) and show that they are strategyproof, but only one, called CAT
(CQ Admission based on Total load), is also sybil immune.

• Our proposed mechanisms support shared processing of continuous queries and take that into
consideration to achieve sybil-immunity and strategyproofness.

• We experimentally show that greedy mechanisms (which take into account both the bid and
the load for each user’s query), provide both increased system profits as well as better total
user payoff, compared to a randomized algorithm that has a profit guarantee. In particular,
CAT provides the best tradeoff with respect to profit.

Road map. We define the system model in Section 2 and provide a summary of the relevant
background in Section 3. We present our proposed mechanisms and prove their strategyproofness
in Section 4 and analyze their sybil immunity in Section 5. We evaluate the proposed mechanisms
experimentally in Section 6. We discuss extensions of our problem in Section 7. Finally, we
conclude in Section 8.

2. SYSTEM MODEL

A continuous query evaluation plan can be conceptualized as a data flow tree [Carney et al.
2002],[Babcock et al. 2003], where the nodes are operators that process tuples and edges represent
the flow of tuples from one operator to another. An edge from operator oi to oj means that the
output of oi is an input to oj . For example, the edge from A to B in Figure 2(a) means that the
operator B reads the output of operator A. Each operator is associated with a queue where input
tuples are buffered until they are processed. We assume an underlying query model similar to
the Aurora model [Abadi et al. 2003] where operator subnetworks are connected via connection
points that allow the dynamic reconfiguration of the continuous query evaluation plan. At the
beginning of a reconfiguration, existing tuples are stored at the connection points and at the end
of the reconfiguration, these tuples are input into the new subnetwork before the new arriving
tuples are processed. For our purposes, it is sufficient to view a CQ as a collection of operators
ignoring their dependencies (Figure 2(b)).

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

250 · Lory Al Moakar et al.

(a) Query Plan. Each operator is labeled with the load
associated with it.

(b) Simplified plan, omitting operators order information.
User bids are shown as dollar amounts.

Figure 2: Queries in Example 1 as seen by the DSMS.

In our data center (Figure 1), the DSMS has an admission control mechanism that supports a
subscription period. During each subscription period, say a day, users submit queries qi (i = 1 ...
n) along with bids bi. At the end of each subscription period, the admission control mechanism
evaluates the users’ bids and relevant information about their CQs, and returns a decision about
which CQs to admit and run the next day2. The mechanism also returns the price pi charged to
each CQi that is admitted. After each user is charged a price, she cannot withdraw her query.
A bid bi expresses a declared bound on how much a user is willing to pay to have query qi

executed. Further each user has a private value vi expressing how much having query qi run is
really worth to her. The payoff (aka utility) ui of the user that submitted query qi is vi − pi if
qi is accepted, and 0 otherwise.
We assume that each operator oj has an associated load cj that represents the fraction of the

system’s capacity that oj will use, and this load can at least be reasonably approximated by the
system [Abadi et al. 2003; Sharaf et al. 2008]. The aggregate load of the operators in the accepted
CQs can be at most the capacity of the server. We model the system capacity as the amount of
work that can be executed in a time unit, given the system’s resources (CPU, memory, etc.).
Multiple queries with common sub-expressions are usually merged together to eliminate the

repetition of similar operations [Sellis 1988]. For this reason we consider two different definitions
of the load of the query. The total load and the fair share load of a query, defined as follows.

Definition 1. (Total Load CT
i) The total load CT

i of query qi is equal to the sum of the loads
of all the operators of qi.

Definition 2. (Fair Share Load CT
i) The fair share load CF

i of query qi is equal to the sum
of the fair-share load of its operators, where the fair-share load of an operator is the load of the
operator divided by the number of queries that share that operator.

It is expected that many CQs may contain the same operator. Shared operator processing
has already been proposed and utilized in the literature ([Abadi et al. 2003; Madden et al. 2002;
Krishnamurthy et al. 2006]). Operator sharing is based on the premise that many CQs are
monitoring a few hot streams, and many of the CQs are similar, but not identical. For example,
one could imagine many queries want to select news stories on publicly traded companies. So in
a stock monitoring application, many aggregate CQs will be defined on few indexes, with similar
aggregate functions, but different joins and different windows. Thus, sharing can be expected to
be heavy.

2Of course, the time span between each auction could just as easily be one week or one month. In Section 7, we
discuss how our results can extend to a more general setting where each query may subscribe for a different time
span.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Auction-based Admission Control for Continuous Queries in a Multi-Tenant DSMS · 251

Example 1. To make these concepts concrete, consider three queries (q1, q2 and q3) that
process two streams (s1 and s2) and are submitted to a DSMS with a capacity of 10 units. Figure
2(a) shows their query plan as generated by the query optimizer of the DSMS and is used to
identify the shared operators. For example, operator A is shared by q1 and q2.

As mentioned above, it is sufficient to abstract away the dependencies between operators of a
CQ and retain only the information seen in Figure 2(b): the set of operators that comprise all
the queries, the load of each operator, an indication of which queries each operator belongs to,
and the user bids. We will use this representation in the rest of the paper for the readability of
our figures.

3. RELEVANT BACKGROUND

A mechanism where users always maximize their payoff by truthfully revealing all their private
information is called strategyproof. In many auction settings, clients’ true valuations are the only
private information, and hence in such settings strategyproofness means that clients maximize
their payoff when bidding their true valuations. In this paper, we will refer to this property as
bid-strategyproofness, as we also consider other private information: a user might conceivably lie
about which operators are contained in her query, say by adding additional operators that are
not part of the query she actually desires. In the context of our CQ admission auction then, we
call a mechanism strategyproof when both bidding truthfully and submitting only the operators
in the query actually desired by the user maximizes the user’s payoff. In this work, all the
mechanisms we propose are not only bid-strategyproof, but also strategyproof. Several standard
auction problems are special cases of our auction problem for CQs.

Settings without Sharing. In the special case that there are no shared operators, the load of
each query (which is the aggregate load of the query’s operators) is the same, and there is room
for k queries, then this is equivalent to the problem of auctioning k identical goods. Charging
each of the k highest bidders the (k + 1)st highest bid is well known to be bid-strategyproof.
When k = 1, this is famously known as “Vickrey’s second price” auction.
If CQs do not share operators, but the load of each query may be different, then the resulting

problem is what is known in the literature as a Knapsack Auction problem, studied by Aggarwal
and Hartline in [Aggarwal and Hartline 2006]. It is worth noting that in our CQ admission setting,
the problem of maximizing total user valuation solves the well-known knapsack problem3, and
is thus NP-hard. It is this fact that tempers any hope of finding an efficient implementation of
the standard, well-known, bid-strategyproof VCG mechanism: in order to calculate the correct
payment for each winner, the VCGmechanism would require that we calculate an optimal solution
to this NP-hard problem.

Operator Sharing. Operators shared between queries greatly complicate the task of the mech-
anism because the profit density of a query, which refers to the ratio of the bid for that query
(or potential profit to be obtained from accepting the query) to the load of the query, depends
on which other operators are selected. For example, consider a query qi with low value and high
load. In overload situations, query qi would surely be rejected in a knapsack auction. But if all
of qi’s operators were shared by high value queries, then the effective profit density of qi (given
that we know these high value queries were accepted) could be very high. This dependency
between queries makes the mechanism’s task much more complex in the case of our CQ auction
than in the case of a knapsack auction. This complexity is illustrated by the fact that there is
a polynomial time approximation scheme for finding the maximum value collection of items to

3In the knapsack problem, we are given n items, each with a weight and a value, and a knapsack with a given

weight limit. The goal is to find a subset of the n items that maximizes total value while not exceeding the weight
limit. If the operators in our problem are mapped to the knapsack items, their loads on the system are the weights
of the knapsack items, and the user valuations are the values of the knapsack items, then any efficient solution for
our problem will also efficiently solve the knapsack problem.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

252 · Lory Al Moakar et al.

select in a knapsack auction, but even for a special case of our CQ auction, the densest subgraph
problem, it is not known how to approximate the optimal solution to within a constant factor in
polynomial time [Feige et al. 2001].

Characterizations of Strategyproofness. A CQ auction where the only private information
is the amount each user values her query is called a single-parameter setting. In single-parameter
settings, an allocation mechanism is called monotone if every winning bidder remains a winning
bidder when increasing her bid. The critical value of user i is the value ci where if the user bids
higher than ci, she wins, but if she bids lower than ci, she loses. Note that the existence of a
critical value for each user is guaranteed by the preceding monotonicity property. It is shown in
[Nisan 2007] that a mechanism is bid-strategyproof if and only if it is both monotone and each
winning user’s payment is equal to her critical value.
One final auction setting related to our CQ auction is the single minded bidders (SMB) auction

problem, studied by Lehmann et al [Lehmann et al. 2002]. Each single-minded bidder i is inter-
ested in a specific collection Si from the set of items being auctioned (for a CQ auction the items
being auctioned would be server capacity units and Si would be the units needed to process the
collection of operators in the query qi). In addition to bid-strategyproofness. [Blumrosen and
Nisan 2007; Lehmann et al. 2002] provide a characterization for strategyproofness in this setting
that applies to our setting. Their characterization of a strategyproof mechanism for an SMB
auction differs only slightly from the above characterization for bid-strategyproofness: the defi-
nition of monotonicity is expanded. In terms of our CQ admission auction, monotonicity means
that not only must a winning bidder remain a winning bidder when increasing her bid, but also
must remain a winner when submitting a query comprised of a strict subset of the operators in
the admitted query.

Admission Control in DSMSs. Admission control in a DSMS has been studied extensively
in the context of load shedding which is done at the tuple level with the primary objective of
controlling the response time of queries during runtime [Gedik et al. 2005], [Tatbul et al. 2003]
or satisfying the QoS requirements [Pham et al. 2011]. They do not consider strategyproofness
or profit maximization. The work in [Wolf et al. 2009] and [Wolf et al. 2008] selects a subset of
CQs to run every epoch in a similar fashion to our work. However, their goal is to maximize the
utilization of the system and the overall importance of the CQs. In contrast, our work focuses
on profit maximization, strategyproofness and sybil immunity even at the expense of system
utilization.

4. PROPOSED MECHANISMS

In this section, we present several greedy CQ auction mechanisms. Each of these mechanisms has
the following form: (1) sort queries in order of decreasing profit density (bid per unit of required
server load), and then (2) admit queries until the server is full.
The intuition is that we wish to accept queries with high valuation to load ratio. Next we

present these mechanisms in detail.

4.1 Clients Chosen by Remaining Load (CAR)

In order to set the stage, we start by describing a näıve approach that uses the remaining (i.e.,
additional) load of CQs for choosing winners and determining payment values. This approach
accurately captures how much extra load each admitted CQ will contribute to the total load on
the server. However, We show how this approach is not bid-strategyproof.
Consider the following natural mechanism using the aforementioned greedy scheme for choosing

winners. The mechanism first chooses each winner based on a value we define called a query’s
“remaining load.” Then the mechanism charges each winner a payment that also depends on that
user’s remaining load. We refer to the mechanism as the CAR mechanism (CQ Admission based
on Remaining load). We will show that using such a payment scheme is not bid-strategyproof
due to the fact that user’s payments are dependent on their bids.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Auction-based Admission Control for Continuous Queries in a Multi-Tenant DSMS · 253

Algorithm 1 Our basic fair share mechanism (CAF).
Input: A set of queries with their static fair share loads CSF

i and their corresponding bids bi.
Output: The set of queries to be serviced and their corresponding payments.

(1) Set priority Pri to bi/C
SF
i for each query i.

(2) Sort and renumber queries in non-increasing Pri so that Pr1 ≥ Pr2 ≥ . . . ≥ Prn.

(3) Add the maximal prefix of the queries in this ordered list that fits within server capacity to
the winner list.

(4) Let lost be the index of the first losing user in the above priority list.

(5) Charge each winner i a payment of pi = CSF
i (blost/C

SF
lost). Charge all other users 0.

Selecting Winners. We sort the CQs in non-increasing order of priority Pri, where Pri = bi/C
R
i

and CR
i is defined as:

Definition 3. (Remaining Load CR
i) The remaining load CR

i of query i is equal to the total
load of all the operators of qi except those operators that are shared with CQs that have already
been chosen as winners.

In every iteration through the loop, the algorithm chooses the query with the highest priority
and if there is enough remaining capacity in the system to accommodate it, places it in the set
of winners. At the end of each iteration, the remaining loads CR

i as well as the priorities of the
yet-unchosen queries are updated. We demonstrate these steps with the example in Figure 2(b).

Calculating Payments. We naturally base our first payment mechanism on the known bid-
strategyproof k-unit (k + 1)th-price auction. Recall from Section 3 that a simple strategyproof
mechanism for a k-unit auction is to charge each winning bidder the bid amount of the (k+1)th
highest bidder. Hence, we define qlost to be the CQ with highest priority that is not a winner.
Then, the payment of each winning CQ qi is calculated as follows: pi = CR

i · blost/CR
lost. If the

query does not belong to the winners list, then the payment is zero.

Remaining Load Algorithm Applied to Example 1. The initial remaining loads of q1 , q2 and q3
are 5, 6, and 10, respectively, and their priorities are 11,12 and 10. During the first iteration of
the above algorithm, q2 is chosen first. Since operator A is chosen as part of q2, the remaining
load of q1 becomes the load of operator B (just 1 unit) and its priority becomes 55. Consequently,
during the second iteration q1 is chosen. The remaining capacity in the system is 3. During the
third iteration, q3 is chosen, however it does not fit in the remaining capacity in the system. As
a result, the winners list is composed of q1 and q2, and qlost is q3. As a result, the payments for
q1 and q2 is $10 per unit load, which amount to respective payments of $10 and $60.

Strategyproofness. The above payment mechanism at first glance seems bid-strategyproof since it
is based closely on the well-known bid-strategyproof second-price auction mechanism. However,
it is not, since a winning user i who shares operators with other winning users can gain by bidding
lower than her true value. She can strategically bid low enough so that she gets chosen for service
after the users she shares operators with, but still high enough to win. This will result in a lower
remaining load CR

i and thus in a lower payment.

4.2 Clients Chosen by Static Fair Share Load (CAF, CAF+)

At this point it has become clear that using remaining load
(
CR

i

)
for setting payments of users is

problematic because of the dependence of these values on the user’s bid. Therefore, we consider
using a fixed load that does not change over the course of the winner selection algorithm, and we
use that same fixed load to calculate payments.
We define the static fair share load as follows.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

254 · Lory Al Moakar et al.

Algorithm 2 Our aggressive fairshare mechanism (CAF+).
Input: A set of queries with their static fair share loads CSF

i and their corresponding bids bi.
Output: The set of queries to be serviced and their corresponding payments.

(1) Set priority Pri to bi/C
SF
i for each query i.

(2) Sort and renumber queries in non-increasing Pri so that Pr1 ≥ Pr2 ≥ . . . ≥ Prn.

(3) For i = 1 . . . n, add user i to the winner list if doing so does not exceed capacity.

(4) For each winner i, calculate last(i), as defined in Definition 6.

(5) Charge each winner i a payment of
pi = CSF

i (blast(i)/C
SF
last(i)). Charge all other users 0.

Definition 4. Let oj be an operator that has a load of cj and is shared among l different
CQs, then the static fair share load of oj per CQ is defined as cSF

j = cj/l. Hence, the static fair

share load of a CQ qi is defined as CSF
i =

∑
oj∈Qi

cSF
j .

In the following subsections we propose two bid-strategyproof payment mechanisms using the
same greedy scheme, but based on static fair share load: CAF and CAF+.

CAF (CQ Admission based on Fair share). Our first bid-strategyproof mechanism that
depends on the static fair share load as defined in Definition 4 is shown in Algorithm 1.

Selecting winners. Steps 1 through 3 of Algorithm 1 greedily select winners as follows. A priority
is assigned to each operator, where the priority is the value-load ratio: Pri = bi/C

SF
i . Then the

list of CQs is sorted in descending order of these priority values. The algorithm admits CQs from
the priority list in this order as long as the remaining load CR

i of hosting the next CQ does not
cause system capacity to be exceeded. (Note that the load considered while checking capacity
constraints is not the static fair share load.) The algorithm stops as soon as the next CQ does
not fit within server capacity.

Calculating payments. Once we have selected the winners, we calculate the payment for each
winning user according to steps 4 and 5 of Algorithm 1.

CAF Applied to Example 1. Since q1 shares operator A with q2, C
SF
1 is 3 and CSF

2 is 4. During
the first iteration of CAF, the priorities of q1, q2 and q3 are 18.34, 18, and 10. As a result, CAF
chooses q1 first and then q2. Again, q3 is qlost. Thus the payments for q1 and q2 are $10 per unit
load, which amount to respective payments of $30 and $40.

Strategyproofness. We prove the following theorems by using the characterization of bid-strategy-
proof mechanisms for any single-parameter setting (Section 3).

Theorem 1. The CAF mechanism is bid-strategyproof.

Proof. The CAF winner selection is clearly monotone: any winning bidder could not become
a loser by increasing her bid since she will only move up in the priority list by doing so. The
CAF payments are also equal to the users’ critical values. If user i bids b′i < CSF

i (blost/C
SF
lost),

then we would have b′i/C
SF
i < blost/C

SF
lost and we know that both user i and user lost could not

fit together on the server with the other winners, so user i will become a loser.

Theorem 2. The CAF mechanism is strategyproof.

Proof. This results from the fact that the characterization for SMB auctions in [Lehmann
et al. 2002] carries over to our setting (see Section 3), and that CAF satisfies their additional
monotonicity requirement that when a winning bidder asks for only a subset of the operators in
her query, she still wins.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Auction-based Admission Control for Continuous Queries in a Multi-Tenant DSMS · 255

(a) Queries in Example 1 in addition to two queries. (b) The movement windows of the queries in Example 1
as determined by CAF+ (x is the lying bid).

Figure 3: Illustration of movement windows

CAF+: An Extension to CAF. CAF+ extends CAF by allowing the algorithm to continue
until there are no unserviced CQs left that will fit in the remaining server capacity.

Selecting winners. While CAF stops as soon as it encounters a query whose load exceeds remain-
ing capacity, CAF+ skips over any queries that are too costly, continuing onto more light-weight
queries in the priority list. (See Algorithm 2.)

Calculating payments. In CAF+, every query that is selected to be serviced has a movement
window. The algorithm calculates the payment of each selected query (winning user) based on
each user’s movement window. Intuitively, the movement window of a winning user is the amount
of freedom the user has to bid lower than her actual valuation without losing.

Definition 5. A user’s movement window is defined as a sublist of the complete list of queries
ordered in descending priority Pri = bi/C

SF
i . We will refer to this list as the priority list. The

movement window of winning user i begins with the user just after user i in the priority list, and
ends at the first user j in the priority list that satisfies the following property: if user i’s bid
was changed so that it directly followed the position of user j in the priority list, CAF+ would
no longer choose query i as a winner. If such a user j does not exist, then user i’s movement
window spans the entire remainder of the priority list.

Definition 6. For each winning query qi, last(i) is defined to be the first query which is
outside qi’s movement window. If there are no queries remaining outside the movement window
of qi, then last(i) is set to null.

The payment in CAF+ (Algorithm 2) is calculated for each query after the set of queries to be
serviced is determined. For each winner i, the algorithm first calculates the identity of last(i).
Then the payment for the selected query is defined as pi = CSF

i · blast(i)/CSF
last(i). If user i’s

movement window included all remaining queries in the priority list, i.e., if last(i) = null, then
the payment of user i is 0.

CAF+ Applied to Example 1. To demonstrate the difference between CAF and CAF+, assume
two additional queries to those of Example 1, namely q4 and q5, with bids b4 = 18 and b5 = 24
respectively (See Figure 3(a)). Three operators of loads 1, 2 and 2 are needed by the two queries.
Query q4 consists of the first two operators (G and K) for a total load of 3, while q5 consists of
the latter two operators (K and J) for a total load of 4. Thus, CSF

4 is 2 and CSF
5 is 3. All the

values of the other queries remain intact. During the first iteration of CAF+, the priorities of q1

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

256 · Lory Al Moakar et al.

through q5 are 18.34, 18, 10, 9 and 8. As a result, CAF+ chooses q1 first and then q2. Again, q3
is not admitted because its remaining load exceeds the remaining system capacity. As opposed to
CAF which would have stopped at this point, CAF+ continues to admit q4 because its remaining
load (3) fits in the available system capacity. Figure 3(b) shows the movement windows for the
winning queries namely q1, q2 and q4. The movement window for q1 and q4 spans the rest of the
priority list. Thus, their payments are $0. The payment for q2, however, is $8 per unit ($32 for
the whole query) because its movement window ends at q5. This is because after choosing q1,
q2’s remaining load is 2, and it can lower it’s priority by lowering it’s price (variable x) down to
a point where it is just selected. That point is right before q5, thus its payment is determined by
q5’s price per unit.

Strategyproofness. Under CAF and CAF+, a user might be tempted to lie about which operators
are contained in her query because of the concept of fair share load. However, both CAF and
CAF+ are bid-strategyproof (clients maximize their payoff when bidding their true valuations)
and strategyproof (clients maximize their payoff when both bidding truthfully and submitting
only the operators in the query actually desired by the user)

Theorem 3. The CAF+ mechanism is bid-strategyproof.

Proof. Proof of this theorem is included in the Appendix (Seciton A.1).

Theorem 4. The CAF+ mechanism is strategyproof

Proof. As with CAF, we note that CAF+ is not only bid-strategyproof, but strategyproof.
The reasoning is the same as for CAF (see Section 4.2).

4.3 Clients Chosen by Total Load (CAT, CAT+)

We have developed two more mechanisms that are exactly analogous to the mechanism from
Section 4.2, except that we replace every incidence of the static fairshare load CSF

i with that
total load CT

i =
∑

oj∈Qi
cj . Thus we have two mechanisms.

—CAT (CQ Admission based on Total load): analogous to CAF described in Section 4.2.

—CAT+: analogous to CAF+ described in Section 4.2.

CAT Applied to Example 1. In example 1 CT
1 , C

T
2 and CT

3 are 5, 6 and 10 units. Thus Pr1, Pr2
and Pr3 are 11, 12, and 10. Consequently, CAT chooses q1 and q2 to be serviced. The payments
for q1 and q2 are $10 per unit load, which amount to respective payments of $50 and $60.
It is easy to verify that the proofs of bid-strategyproofness carry over to these modified versions

of the algorithms and payments. We therefore have the following four theorems.

Theorem 5. The CAT mechanism is bid-strategyproof.

Theorem 6. The CAT mechanism is strategyproof.

Theorem 7. The CAT+ mechanism is bid-strategyproof.

Theorem 8. The CAT+ mechanism is strategyproof.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Auction-based Admission Control for Continuous Queries in a Multi-Tenant DSMS · 257

4.4 A Profit Guarantee

While we will experimentally show that the above greedy mechanisms perform quite well for profit
maximization (Section 6), they do not admit provable profit guarantees that are reasonable (due
to some special, pathological input instances). We thus investigate a basic mechanism that is
based only on user bids rather than density: the CQs are simply sorted in decreasing bid order,
and then selected from the top until the next CQ does not fit in system capacity. The chosen
CQs then pay a price equal to the bid of the first losing CQ. We refer to this basic solution as
the Greedy-by-Valuation (GV) mechanism. While GV also does not admit a profit guarantee,
we propose a strategyproof randomized mechanism based on GV called Two-Price, that has a
provable profit guarantee.
Specifically, Two-price is competitive (in expectation) with the best optimal constant pricing

mechanism. A constant pricing mechanism as defined in [Aggarwal and Hartline 2006], is any
mechanism (strategyproof or not) where the users are all charged the same price, call it p, and
those who bid strictly higher than p are winners, those who bid strictly lower than p are losers,
and those who bid equal to p may be designated winners or losers arbitrarily by the mechanism.
Winners must all pay p and losers pay 0. Profit is defined to be the sum of the payments that
the mechanism charges or receives from the users.
A constant pricing mechanism is valid if all winners fit within server capacity, and so we

will only consider valid constant prices. Optimal constant pricing profit (OPTC) then refers to
the maximum possible profit that can be attained from any valid constant pricing mechanism
(strategyproof or not). We choose to focus on constant pricing optimality in this paper because
with the shared processing of queries in our problem, other standard profit benchmarks seem
difficult to compete with. Two other natural profit benchmarks include optimal pricing per unit
load and optimal monotone pricing, both of which generalize optimal constant pricing and were
discussed in the context of Knapsack Auctions in [Aggarwal and Hartline 2006]. But because of
our shared processing between queries, the processing load required of each query is not clear
cut. Hence both proportional and monotone pricing definitions become problematic.

The Two-price Mechanism. We now show that by only using two distinct prices, under the
assumption that the users all have distinct valuations, we are able to find a bid-strategyproof
mechanism that approximates optimal constant pricing profit. We show however that there is a
trade-off between the run-time of the mechanism and its profit. We first present a mechanism that
runs in time exponential in the number of duplicate valuations, then explain how a polynomial
time version of it gives a weaker profit guarantee. The algorithm is shown in Figure 3.
The first phase of the Two-price mechanism (Steps 1 and 2) follows our greedy scheme (using

user valuations), the second phase (Step 3) is an exhaustive search that gives the potential
exponential running time in terms of number of duplicate valuations, and the last phase (Steps
4 through 6) contains the randomization and is essentially identical to the Random Sampling
Optimal Price auction of [Goldberg et al. 2006].
Note that in Step 3 of the mechanism we run an exhaustive search on all possible subsets of

the critical set of queries with duplicate valuations. The possibility of sharing of server capacity
between queries is what requires us to take this potentially time consuming step, as the prob-
lem of optimally determining which subset of queries to admit in the face of such sharing is a
generalization of the well known NP-hard bin packing problem.

Strategyproofness: A randomized mechanism is bid-strategyproof in expectation if for every user
i, the expected payoff for user i is maximized when user i bids her true valuation vi [Nisan 2007]. A
randomized mechanism is bid-strategyproof in the universal sense if it is not only bid-strategyproof
in expectation, but it is also “ex post” bid-strategyproof. That is, regardless of the outcome of
the randomness, users always maximize their payoff by bidding their true valuations. In other
words, a universally bid-strategyproof randomized mechanism is a probability distribution over
bid-strategyproof deterministic mechanisms [Nisan 2007].
To prove that our Two-price mechanism is bid-strategyproof in the universal sense, we depend

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

258 · Lory Al Moakar et al.

Algorithm 3 Two-price mechanism.
Input: Set of n queries and corresponding user valuations v1 . . . vn.
Output: Set of winners and their corresponding payments.

(1) Sort and renumber the queries in order of decreasing valuation, so v1 ≥ v2 ≥ v3 ≥ . . . ≥ vn,
breaking ties arbitrarily.

(2) Let H be the ordered set of queries that comprise the maximal prefix of queries from this
sorted list that fits within our server capacity. Let L be the ordered set of losers (remaining
queries not chosen for H) and let vL be the valuation corresponding to the first query in L.

(3) If the last query in H has valuation vL, the set of queries in H must be adjusted as follows.
Let D be the set of all users with valuation equal to vL, and let d be the cardinality of D.
Let H ′ = H −D. Let D∗ be the largest subset of D that fits within capacity along with H ′.
Redefine H = H ′ +D∗

(4) Partition the users from H evenly into two sets, A and B, uniformly at random. Renumber
queries separately in each set as in step 1. I.e., v1 ≥ v2 ≥ . . . ≥ va for the a queries in set A,
and v1 ≥ v2 ≥ . . . ≥ vb for the b queries in set B, again breaking ties arbitrarily.

(5) Calculate the optimal constant price profit of each set of queries: OPT (A) = maxi∈A ivi and
OPT (B) = maxi∈B ivi. Let k = argmaxi∈A ivi and let pA = vk. Similarly, let j =
argmaxi∈B ivi and let pB = vj .

(6) Use the price pA to determine the winners from set B and use the price pB to determine the
winners from set A. Specifically, the winners from set B are those users whose valuations are
greater than pA, and these winners are each charged a payment of pA. Similarly determine
winners and payments for users in set A.

on some existing results. In [Aggarwal and Hartline 2006], mechanism composition is defined as
follows.

Definition 7. Define the composite mechanism M1 ◦ M2, of two mechanisms M1 and M2,
as:

(1) Simulate M1 and let H be the set of winners.

(2) Simulate M2 on the set H.

(3) Offer a price to each winner of Step 2 that is the maximum of the price she is offered by M1

and M2.

They then define a mechanism to be composable if it is both bid-strategyproof and the set
of chosen winners does not change as any winning user varies her bid above her critical value.
Finally, they prove the following lemma.

Lemma 1. ([Aggarwal and Hartline 2006]) If mechanism M1 is composable and mechanism
M2 is bid-strategyproof then the composite mechanism M1 ◦M2 is bid-strategyproof.

Theorem 9. The Two-price mechanism is bid-strategyproof.

For the proof of the this theorem please see the Appendix (Section A.2).
Note that because the Two-price mechanism allocates winners and sets payments entirely

independent of each query’s load, it is not only bid-strategyproof, but strategyproof.
We now state the competitiveness of Two-price for profit maximization. We assume user

valuations range from 1 to h and we use OPTC to refer to the optimal constant pricing profit.

Theorem 10. The expected profit of the Two-price mechanism is at least OPTC − 2h.

For the proof of the this theorem please see the Appendix (Section A.3).

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Auction-based Admission Control for Continuous Queries in a Multi-Tenant DSMS · 259

Figure 4: This figure illustrates the third user from Example 1 perpetrating a sybil attack by
forging two additional fake users. The real queries are indicated in solid lines while the fake
queries are indicated in dashed lines. The presence of these fake queries creates the illusion that
user 3’s operators are in higher demand, which could conceivably influence the mechanism to
either charge the third user less, or service her when she would not have otherwise been serviced.

The next theorem applies to the polynomial-time mechanism that results when Step 3 of
Algorithm 3 is omitted.

Theorem 11. The expected profit of the polynomial-time mechanism defined by the Two-price
mechanism without Step 3 is at least OPTC − dh, where d is the number of identical valuations
in the input.

For the proof of the this theorem please see the Appendix (Section A.4).
In this section we presented mechanisms that are strategyproof. Next, we investigate their

sybil immunity.

5. SYBIL ATTACK

In this section we consider a strategic behavior that is well-known in the context of reputation
systems like that of eBay and Amazon for rating sellers, buyers and products: a sybil attack. A
user who behaves strategically using a sybil attack forges multiple (“fake”) identities to manipu-
late the system. In reputation systems a user might try to boost the reputation of some entity by
perhaps adding positive recommendations from false users [Friedman et al. 2007]. In our setting,
a sybil attack amounts to creating false identities to submit additional queries that the user does
not need or value in order to manipulate the mechanism (see Figure 4.)
Thus we define a mechanism to be sybil immune if a user can never increase her payoff by

submitting additional fake, no-value queries. Sybil immunity is referred to as false-name proof
in the context of General Vickrey Auctions [Sakurai et al. 1999].
We make the natural assumption that if a fake query is chosen to be serviced, the sybil attacker

is responsible for making the fake query’s payments, so a user’s payoff is the aggregate payoff that
she gains from the queries of all of her identities. We will show here that CAT is sybil immune,
while the rest of the mechanisms are not. To the best of our knowledge, this is the first time that
sybil immunity has been proposed in data management, and we note that the notion of sybil
immunity can apply to any mechanism design problem.

Definition 8. We define a mechanism to be vulnerable to sybil attack if there exists an input
instance where there is a user who can increase her payoff by perpetrating a sybil attack.

Definition 9. We define a mechanism to be universally vulnerable to sybil attack if in every
input instance, every user has a way to improve her payoff by perpetrating a sybil attack.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

260 · Lory Al Moakar et al.

Table I: An example of a sybil attack that beats CAT+.

User 1 2 “3”

vi 100 89 100ϵ+ ϵ

CT
i 1 0.9 ϵ

Pri 100 < 100 > 100

Round 1 100 < 100 picked

Round 2 exceeds cap. picked picked

Payments pi 0 0 ← 100ϵ

Payoffs 0 89− 100ϵ N/A

Definition 10. We say that a mechanism is immune to sybil attack if for every input in-
stance, no user can increase her payoff by perpetrating a sybil attack (i.e., it is not vulnerable).
We also use the term sybil immunity to refer to this property.

5.1 Attacks Against the Fair Share Mechanisms

Unfortunately, our proposed fair-share schemes of Section 4.2 are vulnerable to sybil attack. A
user i can employ the following strategy using a sybil attack to improve her payoff: simply create
fake users with negligible valuations whose queries share operators with qi. A sybil attack of
this kind will lower the attacker’s fair share load, improving her ranking and enabling her to be
selected as a winner while simultaneously decreasing her payment to an affordable amount. Note
that it is always possible for the attacker to set her fake users’ valuations low enough so that
they are not in danger of being selected as winners, and hence will require no additional payment
from the attacker.
Indeed, we can prove that in any given instance of the CQ admission problem, any user can

gain from employing a sybil attack against our fair share mechanism.

Theorem 12. Both the CAF or CAF+ mechanisms are universally vulnerable to sybil attack.

5.2 Attacks Against the Total Load Mechanisms

In contrast to this vulnerability of our fair share mechanisms, the total load payment mechanisms
(CAT and CAT+), described in Section 4.3, seem at first to be robust to such attacks. While
we have seen that a user’s fair share can easily be reduced by creating fake identities, a user’s
total load is not dependent on the number of other users sharing her load, and therefore CAT
and CAT+ should not (at least at first glance) be prone to such sybil attack strategies.
However, one of our total load mechanisms is not immune to sybil attack. We begin by giving

the following characterization of sybil immunity. A mechanism is sybil immune if and only if
both of the following properties hold:

(1) The arrival of additional queries will never cause a loser to become a winner with positive
payoff.

(2) If the arrival of additional queries reduces a winner’s payment by δ, the additional queries
that become winners must be charged a total of at least δ by the mechanism.

We now show that CAT+ is vulnerable to sybil attack because it does not satisfy the above
property 1.

Theorem 13. For the CQ admission problem, CAT+ is vulnerable to sybil attack.

To see why, consider the example in Table I, in which a sybil attacker defeats our total load
algorithm, CAT+. User 2 is a sybil attacker, creating a fake query that appears to the system
as “user 3”. Here, ϵ represents an arbitrarily small positive value. In this example, if user 2 does
not perpetrate the attack, user 1 will get chosen for service, and then server capacity will be

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Auction-based Admission Control for Continuous Queries in a Multi-Tenant DSMS · 261

reached, so user 2 would not get serviced. Whereas when user 2 introduces the fake “user 3,” she
is able to trick the system into choosing her instead of user 1. While user 2 is responsible for the
fake user’s payment, user 2 carefully created “user 3” so that its payment would be a negligible
amount. Note that user 2’s payment for query 2 is 0 since there is no one left after she is chosen.
Note that in this kind of sybil attack, the danger for user 2 (the attacker) is that when the

fake “user 3” was chosen for service, user 2 had to make user 3’s payment. Hence user 3’s fake
valuation and fake load had to be carefully chosen by user 2 so that user 2 found paying user
3’s fee worthwhile. (Recall from Section 4.3 that payment of a winning user i is calculated as
CT

i vlost/C
T
lost, so in our example, that makes p3 = 100ϵ). In this particular instance, user 2 had

no payment of her own to pay because there are no users that have lower priority than user 2.
This makes paying “user 3”’s payment affordable to user 2.
The good news is: our total load mechanisms are not always bad. First, while our fair share

mechanisms are universally vulnerable to attack, there are instances under the total share mech-
anism that are robust to sybil attack. Second, and more notably, the CAT mechanism is immune
to sybil attack. Thus far in our discussion of sybil attacks, we have been considering sybil attack
in isolation from bid-strategyproofness. However, it is possible that a user can use a sybil attack
in conjunction with lying about her valuation in order to increase her payoff. This possibility
raises the question of whether adding sybil attacks to each user’s set of possible strategies has
removed our mechanism’s bid-strategyproofness.
It turns out that our CAT mechanism remains bid-strategyproof even if we allow sybil attacks,

and it remains immune to sybil attack, even if we allow users to lie about their valuations.

Definition 11. We define a mechanism to be sybil-strategyproof if no user can improve her
payoff by either lying about her valuation, perpetrating a sybil attack, or doing both simultaneously.

We now give a characterization of sybil-strategyproof mechanisms. A mechanism is sybil-
strategyproof if and only if both of the following properties hold:

(1) It is bid-strategyproof.

(2) The arrival of additional users (e.g., via a sybil attack) cannot decrease anyone’s critical value
by an amount more than the total payment charged to the additional users.

The above characterization is used to prove that CAT is sybil-strategyproof.

Theorem 14. For the CQ admission problem, the CAT mechanism is sybil-strategyproof.

5.3 Attacks Against the Randomized Mechanism

Our randomized Two-price mechanism, however, is not immune to sybil attack. This fact is
proven by showing that the mechanism violates property 2 of our characterization of sybil immu-
nity: a winning user can reduce her payment (in expectation) by introducing fake queries such
that the fake queries incur less expected total charges than the amount her payment was reduced
by.

Theorem 15. The Two-price mechanism is vulnerable to sybil attack.

Finally, we note that even if we modify Step 4 of the mechanism so that each query is placed
in set A or B based on independent coin flips (so that H may not be evenly partitioned), the
mechanism is still vulnerable to sybil attack. Again, the vulnerability is due to a violation of
property 2 of our characterization of sybil immunity. Consider the instance where user 1 has
valuation b and nc users (which get placed into H along with user 1) all have a valuation of c < b.
Set sizes for the users in H so that server capacity is exactly filled.
User 1 creates a fake user with valuation d = c + ϵ, with size equal to the combined size of

all the users with valuation c, kicking them out of H. While before user 1 was charged c with
probability 1 − (1/2)nc and 0 with probability (1/2)nc , now that only user 1 and the fake user

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

262 · Lory Al Moakar et al.

Table II: Workload Characteristics

Num of workload sets 50

Num of queries 2000

Num of operators 700 ∼ 8800

Max Degree of Sharing [1− 60] - Zipf, skewness: 1

Max Bid 100 - Zipf, skewness: 0.5

Max Operator Load 10 - Zipf, skewness: 1

System Capacity 5K-10K-15K-20K

are in H, user 1 and her fake user is charged 0 with probability 1/2, and d with probability 1/2.
For choice of ϵ that ensures d/2 < c(1− (1/2)nc), user 1’s expected payoff has decreased.

6. EXPERIMENTAL EVALUATION

In this section, we demonstrate the behavior of our proposed auction-based admission control
mechanisms using simulation. First we present the experimental setup. Then we discuss the
results.

6.1 Experimental Platform

In this section we describe all the technical characteristics of our experimental evaluation.
Mechanisms. We implemented all the proposed admission control mechanisms, as well as

GV (Greedy by Valuation mechanism described in Section 4.4) in Java. We categorize the
mechanisms into two groups: the density-based mechanisms (CAF, CAF+, CAT, and CAT+),
which include all mechanisms that sort the queries based on the ratio of the bid to the load, and
the valuation-based mechanisms (GV and Two-price) that sort the users’ queries based on their
bids.

Metrics. For each mechanism, we measured the following performance metrics:

—Profit: the sum of the payments of the admitted queries.

—Admission rate: The percentage of queries admitted.

—Total user payoff: the sum of the valuations (bids) of the admitted queries minus the payments.
Total user payoff can be seen as an indication of total user satisfaction under each mechanism.

—System utilization: the used capacity of the server.

—The runtime for each mechanism.

The reported results are the average of running each algorithm on 50 different sets of workloads.
Note that, for clarity, our figures do not show GV as it mirrors the behavior of Two-price in all
experiments.

Workload. We summarize the workload parameters in Table II. We generated 50 sets of
workloads for four different system capacities. Each set contains a number of different input
instances. An input instance consists of users’ queries along with their bids, and is parameterized
by:

—System capacity.

—Maximum degree of sharing: The degree of sharing of an operator is the number of queries
that share a single operator, and the maximum is taken over all the operators.

We varied the maximum degree of sharing from 1 to 60. We kept the average query load the
same throughout a workload set, while varying the maximum degree of sharing. To achieve this,
we generate a workload with the highest maximum degree of sharing (i.e., 60) and then gradually
split the operators of the highest degree and distribute the resulting operators into other varying
degrees within a workload. Each input instance consists of 2000 queries and between 700 and
8800 operators (the number of operators decreases as the degree of sharing increases).

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Auction-based Admission Control for Continuous Queries in a Multi-Tenant DSMS · 263

The bids of each query are randomly generated according to a Zipf distribution with maximum
bid value set to 100 and skewness parameter set to 0.5. We chose a skewed distribution (Zipf) to
reflect the real-life scenario, where users’ bids are correlated and close to each other, except for
few out-of-range bids.
The load of each operator is also randomly generated according to a Zipf distribution with the

maximum operator load set to 10 units and skewness parameter set to 1. Operators are assigned
to queries randomly, where for each operator, the number of queries sharing it is drawn from a
Zipf distribution with skewness parameter set to 1 and the maximum degree of sharing varying
from 1 to 60. Again, this skewness of operator sharing reflects the real-life scenarios where there
are few ”hot” streams, where many users are monitoring via CQs, while many other streams are
of less interest, and hence are less shared.

6.2 Experimental Results.

In this section we present the results of our experimental evaluation for the proposed mechanisms.
In the first set of experiments we compare the behavior of all mechanisms in terms of system profit,
user payoff and query admission rate. In the second set of experiments we present the results
of a sensitivity analysis on the system capacity. Finally we compare the runtime performance of
the algorithms.

Mechanism Comparison (Fig. 5)
Figure 5(a) shows the percentage of admitted queries as the degree of sharing ranges from 1

to 60, for a system with capacity 15,000. All mechanisms admit more queries as the degree of
sharing increases. This is due to the fact that the mechanisms are able to take advantage of
the shared processing between queries, so more queries can be serviced using the same system
capacity. Two-price always admits a smaller percentage of the queries than the density-based
mechanisms (CAF, CAF+, CAT, CAT+) because it chooses queries by user bid only, without
regard to query load.
Interestingly, profit (in Figure 5(c)) does not follow the same trend. CAF and CAT are the

best for profit, as they do not admit queries as greedily as CAF+ and CAT+ do, which means the
prices they charge for admitted queries are much higher than those of CAF+ and CAT+. The
profit of CAF+ and CAT+ decreases as the degree of sharing increases because they are simply
admitting so many queries (as sharing increases) that the prices they are charging for admitted
queries continues to be driven downward. Due to the fact that queries are selected in decreasing
order of density and charged a per-unit price equal to the per-unit bid of the first losing query,
very few queries means higher prices, more queries means lower prices. The Two-price mechanism
provides profit that consistently improves as the degree of sharing increases because its profit is
close to the optimal constant pricing profit, which only improves as the number of queries that
can fit within capacity increases. At the point where Two-price crosses over CAF and CAT (with
degree of sharing near 53), we observe the same phenomenon that caused decreasing profit in
CAF+ and CAT+. At the crossover point, CAF and CAT begin to admit such a high rate of
queries that the prices they are charging are being driven dramatically downward (remember,
query valuations are drawn from a skewed distribution), reducing overall profit faster than the
gain in profit from admitting more queries. The profit of CAF in particular begins to really dive,
as the payments are an increasing function of each query’s fair share load, which also shrinks as
the degree of sharing increases.
With respect to maximizing total user payoff (Figure 5(b)), the density based mechanisms

always perform better than Two-price because they are able to admit more queries and satisfy
more customers. CAF+, of course, has the highest payoff because not only are the most queries
admitted under CAF+, but users are only paying for their fair share load, rather than for their
total load. As the degree of sharing increases, CAF begins to overtake CAT+ in total user payoff
because fair share load per user is decreasing, which decreases payments, increasing payoffs. Each
query’s total load on the other hand, remains constant as the degree of sharing increases.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

264 · Lory Al Moakar et al.

(a) System Capacity = 15,000 (b) System Capacity = 15,000

(c) System Capacity = 15,000

Figure 5: Figure 5(a) shows the percentage of queries serviced under each mechanism. Figure
5(b) shows total user payoff, which can be interpreted as a measure of total user-satisfaction. A
user’s payoff is defined as her valuation minus her payment. Seen here is the sum of winning
users’ payoffs. Figure 5(c) shows the system profit. System capacity is set to 15,000.

In terms of utilization, we found that all proposed mechanisms admit queries so as to utilize
more than 98 percent of the system capacity, except for Two-price which utilizes between 96
percent and 98 percent. Note that system utilization is always above 96%, regardless of the
profit and the admission policy. This shows that a good admission control policy gives higher
profits for the same amount of resources.

Sensitivity to system capacity (Fig. 6)
In Figure 6, we show the system profit for three other system capacities. As system capacity

increases, it is apparent that the crossover points (between CAF+, CAT+ and Two-price and
between CAF, CAT and Two-price) are shifted to the left, to lower degrees of sharing. Indeed,
as capacity increases, the picture as a whole seems to shift and scale downward to the lower end
of max degree of sharing. When system capacity is close to the total query demand and the
degree of sharing is high, the Two-price mechanism clearly overtakes all the density mechanisms
for highest profit. As described above, this is due to the fact that so many of the queries are
being serviced by the density mechanisms, driving down the prices being charged.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Auction-based Admission Control for Continuous Queries in a Multi-Tenant DSMS · 265

(a) System Capacity = 5000 (b) System Capacity = 10,000

(c) System Capacity = 15,000 (d) System Capacity = 20,000

Figure 6: System profit as system capacity varies from 5000 to 20,000.

Runtime performance (Table III)
We list the average runtime performance of each mechanism over all workloads with 2000

queries and capacity 15K in Table III. As a baseline, we also implemented a randomly admitting
algorithm, which picks queries at random and stops at the first query that does not fit in the
remaining capacity. The algorithms ran on an Intel Xeon 8 core 2.3GHz, with 16GB of RAM.
The mechanisms only utilized one core. It is clear that the more aggressive mechanisms (CAF+
and CAT+) cannot scale compared to the simple ones. We note here that even though the
density based mechanisms’ runtime is only three to seven times more than the baseline random
algorithm, they provide strategyproofness, and moreover CAT also provides sybil-immunity.

Table III: Runtime performance averages (in msecs) for each algorithm on 50 workloads with 2000 queries

Random 0.92

GV 2.003

Two-price 3.72

CAF 7.088

CAF+ 12555.5

CAT 7.26

CAT+ 10091.2

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

266 · Lory Al Moakar et al.

Figure 7: Profit of strategyproof mechanisms (CAF, CAT, and Two-price) vs the non-
strategyproof CAR (when no user lies), CAR-ML(Moderate Lying workload) and CAR-
AL(Aggressive Lying workload). System capacity = 15,000.

Manipulation of the System (Fig. 7)

Finally, we evaluate CAR for profit both in a setting where users are being truthful about their
valuations, and in a setting where they strategize and bid less than their true valuations (i.e.,
“lie”). Since CAR is the only mechanism that is not strategyproof, such lying under CAR is to
be expected.

To simulate strategizing users, we add an alternative bid to each client, which represents a lower
bid than her valuation, and it is the product of her query valuation (original bid) and a lying
factor. If a user’s query shares many operators with other queries, she would strategize by bidding
lower than her valuation thus lowering her payment and increasing her payoff. Therefore, if the
ratio of Static Fair Share/Total Load is less than a certain threshold, the client will lie (i.e., submit
the alternative bid) with a certain probability. We generated two workloads: a moderately lying
workload and an aggressively lying workload. In the moderately lying workload, the threshold is
set to 0.25, the probability of lying to 0.5, and the lying factor to 0.5, while in the aggressively
lying workload, they are set to 0.35, 0.7 and 0.3 respectively.

Figure 7 shows the profit for three strategyproof mechanisms, CAF, CAT and Two-price,
along with three different representations of the profit of CAR: CAR when no user lies, CAR-ML
(CAR running the Moderate Lying workload) and CAR-AL (CAR running the Aggressive Lying
workload). We see that when some users lie, the system profit decreases, motivating the need
and desire of the system for a strategyproof mechanism. The profit of the three strategyproof
mechanisms is dependable, while the profit from CAR is manipulable.

System Profit vs. User payoff tradeoff (Table IV)

The tradeoff between the System Profit to the Total User Payoff can be quantified using their
ratio. Table IV shows this ratio for all the mechanisms at the degree of sharing of 40 where CAF
provides the best system profit and at 60 where CAT provides the best system profit. Ideally
this ratio should be equal to 1, since a mechanism like that would provide a fair balance between
system profit and user payoff, giving both and equal weight. Clearly, CAT provides the best
tradeoff between profit and user payoff, since it is the one closest to the ideal case. Two-price,
on the other hand, is biased towards System Profit.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Auction-based Admission Control for Continuous Queries in a Multi-Tenant DSMS · 267

Table IV: Ratio of system profit to total user payoff

Degree of sharing 60 40

CAF+ 0.04 0.1

CAT+ 0.09 0.17

CAF 0.37 0.59

CAT 0.73 0.71

Ideal 1 1

Two-price 7.16 12.8

Table V: Properties of our proposed auction mechanisms.

Mechanism Strategy- Sybil Profit Admiss User Profit
proof Immune Guarantee Rate Payoff

CAF X × × High Med High
CAF+ X × × High High Low
CAT X X × Med Med High
CAT+ X × × Med High Low
Two-price X × X Low Low Med

7. DISCUSSION

Table V summarizes the desirable characteristics 4 of each mechanism alongside its performance
for various metrics like profit maximization, total user payoff, and rate of admission.
To extend the proposed solutions to the more general setting of different queries wanting differ-

ent minimum subscription lengths, we propose the following. Assume without loss of generality
that the minimum subscription lengths the system wishes to offer are one day, one week, one
month, and one year. Let each of these lengths be referred to as a subscription category. Parti-
tion system resources so that an appropriate fraction of total system capacity is allocated to each
subscription category. For the queries in each category, run the strategyproof auction mechanism
of your choice (see Table V) with the amount of system capacity allotted to that category. At
the end of each day, reclaim the system capacity from those whose subscriptions expire that day
and iterate: partition the currently remaining available system resources among the different
categories of subscriptions and again run a separate auction mechanism for each category.
The good news is that because each auction is being run independently and separately, and

all our auctions are bid-strategyproof, this scheme as a whole is still bid-strategyproof. How-
ever, introducing these repeated rounds of auctions introduces a new type of potential strategic
behavior. Under such a scheme, users may not be honest about the subscription periods they
are interested in. For example, a user who wants to run a CQ for one month in July may in-
stead bid for a two month subscription starting in June if she believes demand is low enough in
June to get charged a sufficiently low price that paying for two months is cheaper than paying
for one month starting in July. Guarding against this sort of strategic behavior in addition to
maintaining bid-strategyproofness would be a challenging problem for future work.
Another issue to consider is the energy consumption of the DSMS center. Different levels of

system operation incur different energy costs. This can be coupled with the observation that
it might be more profitable not to fully utilize the available capacity. Indeed, this is what our
experiments clearly suggest. Hence, an extension is to decide what is the most beneficial capacity
for a given auction, while considering both the profit as well as the savings from energy reduction.

4Admission Rate, Total User Payoff, and Profit are in terms of relative performance as degree of sharing increases.
For Profit, in the special case that degree of sharing is high and system capacity is almost as high as total system
demand, the profit from CAF and CAT begins to dwindle and the profit from Two-price is highest.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

268 · Lory Al Moakar et al.

8. CONCLUSIONS

This work sits at the intersection of two different lines of data management research, namely user-
centric data management and data stream management, and utilizes techniques from the domain
of game theory. By using an auction model, we are able to explore a novel way of describing user
preferences in the CQ admission control problem. Although most data stream admission control
(load shedding) algorithms work at the tuple level, we believe that focusing on the query level,
as we do in this work, is equally important.
We provided a model for the problem that allows us to establish its difficulty and complexity.

We introduced the notion of sybil immunity for auction mechanisms and designed greedy and
randomized auction mechanisms for this problem which are all strategyproof. We conducted
experiments to evaluate the performance of these mechanisms for metrics such as profit, admission
rate, and total user payoff, and we showed that one of the mechanisms namely CAT is sybil
immune.
Our results show that CAT and CAF are the best mechanisms to use for profit maximization

in most circumstances. However, if you have a high degree of operator sharing, and your system
capacity is close to the total demand of the queries requesting service, then Two-price performs
better for profit maximization. As expected, the greedy mechanisms (CAF, CAF+, CAT, and
CAT+) provide better admission rate and payoff than Two-price. CAF+ and CAT+ are best for
total user payoff, while CAF and CAF+ have the highest query admission rate as the degree of
sharing increases.
Finally, it is worth mentioning that our proposed auction-based admission control mechanisms

can be used in conjunction with traditional (i.e., non-continuous) query processing where there
are many queries that share processing, and executed concurrently.

Acknowledgments

This research was supported in part by an IBM faculty award (Kirk Pruhs), pre-doctoral Andrew
Mellon Fellowship (Shenoda Guirguis), and from NSF grants CNS-0325353, CCF-0514058, IIS-
0534531, IIS-0746696, CCF-0830558, IIS-1050301, CCF-1115575 and CNS-1253218.
We would like to thank our colleagues from University of Pittsburgh, Adam Lee, Thao Pham

and Alex Connor, as well as the Algorithmic Game Theory researchers, namely Avrim Blum,
Gerhard Woeginger, Nikhil Bansal, Maxim Sviridenko and Ho-Leung Chan for their helpful
comments.

REFERENCES

Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul,
N., and Zdonik, S. 2003. Aurora: a new model and architecture for data stream management. VLDBJ 12, 2,

120–139.

Aggarwal, G. and Hartline, J. D. 2006. Knapsack auctions. In Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm. SODA ’06. ACM, New York, NY, USA, 1083–1092.

Al Moakar, L., Chrysanthis, P. K., Chung, C., Guirguis, S., Labrinidis, A., Neophytou, P., and Pruhs,
K. 2010. Admission control mechanisms for continuous queries in the cloud. In Proceedings of the 26th IEEE

International Conference on Data Engineering. ICDE’10. IEEE Computer Society, Long Beach, CA, U.S.A,
409–412.

AmazonEC 2009. Amazon elastic compute cloud, http://aws.amazon.com/ec2/.

Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I., Srivastava, U., Thomas,
D., Varma, R., and Widom, J. 2003. Stream: The stanford stream data manager. IEEE Data Engineering

Bulletin 26, 1, 19–26.

Babcock, B., Babu, S., Motwani, R., and Datar, M. 2003. Chain: operator scheduling for memory minimization

in data stream systems. In Proceedings of the 2003 ACM SIGMOD international conference on Management
of data. SIGMOD ’03. ACM, New York, NY, USA, 253–264.

Blumrosen, L. and Nisan, N. 2007. Combinatorial auctions. In Algorithmic Game Theory, N. Nisan, T. Rough-

garden, Éva Tardos, and V. V. Vazirani, Eds. Cambridge University Press, Chapter 11, 267–300.

Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker, M., Tatbul,

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Auction-based Admission Control for Continuous Queries in a Multi-Tenant DSMS · 269

N., and Zdonik, S. 2002. Monitoring streams: a new class of data management applications. In Proceedings of
the 28th international conference on Very Large Data Bases. VLDB ’02. VLDB Endowment, 215–226.

Chakravarthy, S. and Jiang, Q. 2009. Stream Data Processing: A Quality of Service Perspective - Modeling,
Scheduling, Load Shedding, and Complex Event Processing. Advances in Database Systems, vol. 36. Kluwer.

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Hellerstein, J. M., Hong, W., Krish-
namurthy, S., Madden, S. R., Reiss, F., and Shah, M. A. 2003. Telegraphcq: continuous dataflow processing.
In Proceedings of the 2003 ACM SIGMOD international conference on Management of data. SIGMOD ’03.
ACM, New York, NY, USA, 668–668.

Coral8 2004. http://www.coral8.com/.

Douceur, J. R. 2002. The sybil attack. In Revised Papers from the First International Workshop on Peer-to-Peer
Systems. IPTPS ’01. Springer-Verlag, London, UK, 251–260.

Esper Tech 2006. http://esper.codehaus.org.

Feige, U., Peleg, D., and Kortsarz, G. 2001. The dense k-subgraph problem. Algorithmica 29, 3, 410–421.

Fiat, A., Goldberg, A. V., Hartline, J. D., and Karlin, A. R. 2002. Competitive generalized auctions. In

Proceedings of the thiry-fourth annual ACM symposium on Theory of computing. STOC ’02. ACM, New York,
NY, USA, 72–81.

Friedman, E., Resnick, P., and Sami, R. 2007. Manipulation-resistant reputation systems. In Algorithmic
Game Theory, N. Nisan, T. Roughgarden, Éva Tardos, and V. V. Vazirani, Eds. Cambridge University Press,

Chapter 27, 267–300.

Gedik, B., Wu, K.-L., Yu, P. S., and Liu, L. 2005. Adaptive load shedding for windowed stream joins. In
Proceedings of the 14th ACM international conference on Information and knowledge management. CIKM ’05.
ACM, New York, NY, USA, 171–178.

Goldberg, A. V., Hartline, J. D., Karlin, A. R., Saks, M., and Wright, A. 2006. Competitive auctions.

Games and Economic Behavior 55, 242–269.

Krishnamurthy, S.,Wu, C., and Franklin, M. 2006. On-the-fly sharing for streamed aggregation. In Proceedings
of the 2006 ACM SIGMOD international conference on Management of data. SIGMOD ’06. ACM, New York,
NY, USA, 623–634.

Lehmann, D., Oćallaghan, L. I., and Shoham, Y. 2002. Truth revelation in approximately efficient combina-

torial auctions. J. ACM 49, 5, 577–602.

Madden, S., Shah, M., Hellerstein, J. M., and Raman, V. 2002. Continuously adaptive continuous queries
over streams. In Proceedings of the 2002 ACM SIGMOD international conference on Management of data.
SIGMOD ’02. ACM, New York, NY, USA, 49–60.

Microsoft StreamInSight 2008. http://www.microsoft.com/sqlserver/2008/en/us/r2-complex-event.aspx.

Nisan, N. 2007. Introduction to mechanism design. In Algorithmic Game Theory, N. Nisan, T. Roughgarden,
Éva Tardos, and V. V. Vazirani, Eds. Cambridge University Press, Chapter 9, 267–300.

Pham, T. N., Moakar, L. A., Chrysanthis, P. K., and Labrinidis, A. 2011. Dilos: A dynamic integrated load
manager and scheduler for continuous queries. In Proceedings of the 2011 IEEE 27th International Conference

on Data Engineering Workshops. ICDEW ’11. IEEE Computer Society, Washington, DC, USA, 10–15.

Sakurai, Y., Yokoo, M., and Matsubara, S. 1999. A limitation of the generalized vickrey auction in electronic
commerce: robustness against false-name bids. In AAAI/IAAI. American Association for Artificial Intelligence,
Menlo Park, CA, USA, 86–92.

Sellis, T. K. 1988. Multiple-query optimization. ACM Transactions on Database Systems 13, 1, 23–52.

Sharaf, M. A., Chrysanthis, P. K., Labrinidis, A., and Pruhs, K. 2008. Algorithms and metrics for processing
multiple heterogeneous continuous queries. ACM Transactions on Database Systems 33, 1, 1–44.

Streambase 2006. http://www.streambase.com.

System S 2008. http://domino.research.ibm.com/comm/research projects.nsf/pages/esps.index.html.

Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack, M., and Stonebraker, M. 2003. Load shedding in a

data stream manager. In Proceedings of the 29th international conference on Very large data bases - Volume
29. VLDB ’03. VLDB Endowment, 309–320.

Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D., Wagle, R., and Wu, K.-L. 2009. Job scheduling
strategies for parallel processing. Springer-Verlag, Berlin, Heidelberg, Chapter Job Admission and Resource
Allocation in Distributed Streaming Systems, 169–189.

Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D., Wagle, R., Wu, K.-L., and Fleischer, L. 2008.
Soda: An optimizing scheduler for large-scale stream-based distributed computer systems. In Middleware 2008,
V. Issarny and R. Schantz, Eds. Lecture Notes in Computer Science, vol. 5346. Springer Berlin / Heidelberg,
306–325.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

270 · Lory Al Moakar et al.

A. PROOFS OF STRATEGYPROOFNESS

A.1 Proof of Theorem 3

The CAF+ mechanism is bid-strategyproof.

Proof. The CAF+ winner selection is monotone: any winning bidder could not become a
loser by increasing her bid since she will only move earlier in the priority list by doing so. The
CAF+ payments, by definition of each user’s movement window (Definition 5) are precisely equal
to the minimum value the user must bid in order to remain a winner.

A.2 Proof of Theorem 9

The Two-price mechanism is bid-strategyproof in the universal sense.

Proof. We use Lemma 1. Let M1 be the mechanism defined by steps 1 and 2 of the Two-price
mechanism along with its corresponding critical payments: each user pays an amount equal to
vL, the highest losing bid as defined in Step 2 of the algorithm. This is bid-strategyproof as it is
equivalent to a standard k-Vickrey auction (see Section 3), and it is composable since any winner
varying her price above the highest losing bid does not change the set of winners. We let M2 be
the mechanism defined by the remaining steps of the Two-price mechanism. Note that M2 is a
randomized bid-independent auction (as defined in [Fiat et al. 2002]). Theorem 2.1 in [Fiat et al.
2002] states that an auction is universally bid-strategyproof if and only if it is bid-independent.
Because the payments set by M2 will always be higher than those set by M1, we can invoke
Lemma 1 to conclude our entire mechanism is bid-strategyproof.

A.3 Proof of Theorem 10

The expected profit of the Two-price mechanism is at least OPT − 2h.

Proof. Let n(S, p) refer to the number of users in set S whose valuations are p or higher. Then
the Two-price mechanism’s expected profit can be expressed as TP = E[n(A, pB)pB + n(B, pA)pA].
Observe that

E[n(A, pB)pB] ≥ E[n(B, pB)pB]− pB ≥ E[n(B, p∗)p∗]− pB ,

where p∗ is the optimal constant price if our input was the set H and the second inequality holds
by definition of pB . Then observe that

E[n(B, p∗)p∗] =
n(H, p∗)p∗

2
=

OPT (H)

2
=

OPT

2
(1)

where OPT(H) refers to the optimal solution if the input is only the queries in H, and the
last equality holds because any valid optimal constant price can be no less than the minimum
valuation of any user in H. Putting these together and upper bounding pB with h gives us

E[n(A, pB)pB] ≥
OPT − 2h

2
.

By symmetric arguments for E[n(B, pA)pA] and linearity of expectation we can then conclude
TP ≥ OPT − 2h.

A.4 Proof of Theorem 11

The expected profit of the polynomial-time mechanism defined by the Two-price mechanism with-
out Step 3 is at least OPT − dh, where d is the number of identical valuations in the input.

Proof. We can show that eliminating Step 3 of the Two-price mechanism, yielding a polynomial-
time algorithm, gives a weaker profit guarantee parameterized by the maximum number of du-
plicate valuations. Specifically, if there are d valuations in the input that are identical, then the
profit guarantee decreases to OPT − dh. The analysis is similar to the proof of Theorem 10, the
difference being that we can no longer claim OPT (H) = OPT as in equation (1). Eliminating

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Auction-based Admission Control for Continuous Queries in a Multi-Tenant DSMS · 271

Step 3 of the mechanism means we can only say that H has at least 1 of the queries in the set D,
while OPT has at most d−1 of the queries in D, so we instead obtain OPT (H) ≥ OPT−(d−2)h.
Combining this with the rest of the analysis, which remains the same, gives us the following re-
sult.

B. SYBIL ATTACK PROOFS

B.1 Proof of Theorem 12

Both the CAF or CAF+ mechanisms are universally vulnerable to sybil attack.

Proof. Consider any given user i. We have two cases: either user i is a winner under the
mechanism in question (either CAF or CAF+), or i is a loser.
Case 1. If i is a loser, then i can gain by perpetrating a sybil attack as follows. Let j be a

winning user such that j = argmaxk Prk. Choose the number s of forged queries to be such
that vi/(C

T
i /s) > vj/C

SF
j . User i creates s fake users, each with query identical to qi. Doing

so makes CSF
i ≤ CT

i /s, which by choice of s means Pri = vi/C
SF
i > vj/C

SF
j = Prj . Since j

was the winner with highest priority, and all users have total load at most 1 by assumption, i
is now a winner. We can see that i’s payoff has improved because when i was a loser her payoff
was 0, while now it is vi − pi = vi − CSF

i vj/C
SF
j > 0. User i can also ensure that she makes no

payments for the fake queries she created by setting their valuations to be sufficiently small so
that they all lose.
Case 2. If i is a winner, then i can gain by using a sybil attack to reduce i’s payment, pi. If i

simply creates one fake user whose query is identical to qi, C
SF
i will be reduced, which reduces

pi = CSF
i (vlost/C

SF
lost). Again, user i chooses the fake user’s valuation to be a sufficiently small

value to ensure that the fake query’s priority is low enough to not get serviced.

B.2 Proof of Theorem 14

For the CQ admission problem, the CAT mechanism is sybil-strategyproof.

Proof. Property 1 of the characterization of sybil-strategyproofness is satisfied since we have
already seen from Theorem 5 that CAT is bid-strategyproof. To satisfy property 2 of the charac-
terization, it is sufficient to show that adding additional users to the instance does not decrease
any user’s critical value. Consider any user i. In the CAT mechanism, user i has critical value
pi = CT

i (vlost/C
T
lost). (Recall that lost is defined to be the user with highest priority not selected

to be serviced by CAT.) Since the arrival of additional users cannot change CT
i , we need only

show that the arrival of additional users cannot decrease vlost/C
T
lost = Prlost.

We proceed by induction on the number of additional users that arrive. Assume inductively that
introducing the first k users cannot reduce Prlost. Define lost(k) to be lost in the instance that
includes only the first k fake users, and let lost(k+1) be lost in the instance that includes the first
k+1 users. We must show that Prlost(k+1) = vlost(k+1)/C

T
lost(k+1) ≥ Prlost(k) = vlost(k)/C

T
lost(k).

Consider user j, the (k + 1)th newly arriving user. If user j has priority Prj ≤ Prlost(k), then
lost(k + 1) = lost(k) and hence Prlost(k+1) = Prlost(k). If Prj > Prlost(k) then Prlost(k+1) ≥
Prlost(k).
Hence the critical value of user i cannot be decreased by the arrival of additional users.

B.3 Proof of Theorem 15

The Two-price mechanism is vulnerable to sybil attack.

Proof. Consider the following input instance. User 1 has valuation b > 1 and users 2 and 3
have valuation c > 1, where b > c and c is an integer. Suppose all three users make it past the
first three Steps of the mechanism into the set H with some positive capacity to spare. (Assume
all other users have very large size and valuation less than 1 and were thus placed in set L.)
The mechanism will always charge user 1 a price of c, regardless of the randomness, giving

user 1 a payoff of b− c. However, user 1 can benefit from sybil attack as follows. User 1 creates

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

272 · Lory Al Moakar et al.

2c− 3 fake queries, each with valuation 1+ ϵ, and each with size small enough that they are also
placed in the set H. We consider three cases.

Case 1: users 2 and 3 are in the opposite partition from user 1. Without loss of generality,
assume user 1 is in set A and users 2 and 3 are in set B. In this case, it is impossible for the fake
users to change the payoff of user 1: c− 2 of them are placed in the set B, but (1 + ϵ)c < 2c, so
pB remains at c as before. And none of the fake users are winners.

Case 2: users 2 and 3 are in opposite partitions from one another. Without loss of generality,
assume users 1 and 2 are placed in set A and user 3 is placed in set B. Now, since (1 + ϵ)c > c,
the price pB becomes 1 + ϵ, giving user 1, our sybil attacker, a lower price. The fake users in
set A also must pay 1 + ϵ, but there are only c − 2 of them, so user 1’s net payoff becomes
b− (1 + ϵ)− (c− 2)(1 + ϵ) > b− c, for small enough ϵ.

Case 3: users 1, 2 and 3 are in the same partition. Assume they are all placed in set A. Then
user 1’s new price is again 1+ ϵ. Again, even after making the payments for her fake users, users
1’s payoff has improved.

Thus, overall, user 1’s expected payoff improves due to her sybil attack.

Lory Al Moakar is a member of the Advanced Data Management Technologies Lab-
oratory and a Ph.D. candidate at the Department of Computer Science at the Univer-
sity of Pittsburgh. While there, she received the 2007 and 2012 Orrin E. and Margaret
M. Taulbee award for Excellence in Computer Science. She received her B.S. in Com-
puter Science in 2005, from the American University of Science and Technology in Zahle,
Lebanon. After her graduation, she worked as a part-time instructor at Computer Science
Department at the American University of Science and Technology in Zahle, Lebanon.
Her research interests include Data Stream Management Systems, scheduling and query
optimization. She is currently working under the supervision of Professors Alexandros
Labrinidis and Panos K. Chrysanthis on class-based scheduling in Data Stream Manage-
ment Systems.

Panos K. Chrysanthis is a Professor of Computer Science, and founder and co-director
of the Advanced Data Management Technologies Laboratory, University of Pittsburgh.
He is also an Adjunct Professor at Carnegie Mellon University and at the University of
Cyprus. His lab has a broad focus on user-centric data management for scalable network-
centric applications and has fostered interdisciplinary collaborations between computer
science, medicine, astronomy, and materials science. His research contributions in princi-
ples, algorithms and prototype systems have been documented in more than 150 papers in
top database journals and prestigious, peer-reviewed data management conferences and
workshops and have appeared in textbooks. In 1995, he received one of the first NSF
CAREER Awards and in 2010, he was recognized as a Distinguished Scientist by ACM.
In 2007, he also became a Senior Member of IEEE. Dr. Chrysanthis has served on the
editorial board of several journals, as a PC member in all major data management con-
ferences, and as a General and Program Chair of a number of conferences and workshops.
He was invited to offer tutorials, contribute book chapters, and organize and participate
in NSF planning meetings. Dr. Chrysanthis received his B.S. degree (Physics with concentration in Computer
Science, 1982) from the University of Athens, Greece. He earned the M.S. and Ph.D. degrees (Computer and
Information Sciences, 1986 and 1991) from the University of Massachusetts at Amherst.

Christine Chung is the Jean C Tempel Assistant Professor of Computer Science at
Connecticut College. She received her Ph.D. in Computer Science from University of
Pittsburgh in 2009 under the supervision of Kirk Pruhs. While there, she earned the
2008 Orrin E. and Margaret M. Taulbee award for Excellence in Computer Science. She
earned her M.A. in Mathematics Education from Teachers College, Columbia University
in 2003, and her M.Eng. (2000) and B.A. (1999) degrees in Computer Science from
Cornell University. In 2001, due to her work with ”K-Zone” on ESPN’s Sunday Night
Baseball, she earned an Emmy Award from the National Academy of Television Arts
and Sciences for Innovative Technical Achievement. Her current research interests are in
algorithms and algorithmic game theory.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Auction-based Admission Control for Continuous Queries in a Multi-Tenant DSMS · 273

Shenoda Guirguis is a Software Performance Engineer (R&D) at Intel Co where he
analyzes and fine tunes the performance of Oracle Server Software products on new Intel
hardware products. Before joining Intel, he received his Ph.D. in Computer Science -
Data Management from University of Pittsburgh. He also received a Masters degree
from University of Pittsburgh and another from Alexandria University. He has a total
of ten publications, two patents as results from his summer research internships at NEC
Labsa America and GoldenGate Co. (now part of Oracle). He received seven awards and
fellowships. Shenoda is passionate about Data Management research and innovation. His
areas of interest include data streams, cloud data management, multi-tenant databases,
and web-databases.

Alexandros Labrinidis received his Ph.D. degree from the University of Maryland, Col-
lege Park in 2002, and M.S. and B.S. degrees from the University of Crete, Greece in 1995
and 1993 respectively. He is currently an associate professor at the Department of Com-
puter Science of the University of Pittsburgh and co-director of the Advanced Data Man-
agement Technologies Lab. He is also an adjunct associate professor at Carnegie Mellon
University (CS Dept.). Dr. Labrinidis’ research focuses on user-centric data management
for network-centric applications, including web-databases, data stream management sys-
tems, sensor networks, and scientific data management (with an emphasis on big data).
He has published over 60 papers at peer-reviewed journals, conferences, and workshops;
he is the recipient of an NSF CAREER award in 2008. Dr. Labrinidis is currently the Sec-
retary/Treasurer for ACM SIGMOD, and has served as the Editor of SIGMOD Record,
and in numerous program committees of international conferences/workshops.

Panayiotis Neophytou is a member of the Advanced Data Management Technologies
Laboratory and Ph.D. candidate at the Computer Science Department at the University
of Pittsburgh. He received his B.S. in Computer Science in 2003, from the University
of Cyprus and his MS n Computer Science in 2011, from the University of Pittsburgh.
After receiving his B.S., he worked as a Research Assistant for a year at the Pervasive
Computing Lab of the CS Department of the University of Cyprus. His research in-
terests include Data Management, Data Streams Processing and Systems Integration in
distributed environments. He is currently working under the supervision of Professors
Panos K. Chrysanthis and Alexandros Labrinidis, on a Continuous Workflows Computa-
tion Model and prototype, to leverage stream data processing and the traditional workflow
processing under a single system.

Kirk Pruhs received a bachelors in mathematics and computer science from Iowa State
University in 1984, and a Ph.D. in computer science in 1989 from the University of Wis-
consin, where his adviser was Udi Manber. He has been a faculty member in the computer
science department at the University of Pittsburgh since 1989, and he currently holds the
rank of professor. His main research interests are in algorithmic problems related to green
computing, energy and thermal management, resource management, and scheduling. He
was an organizer of the NSF workshop on the Science of Power Management, and the
Dagstuhl series of seminars on Scheduling. He is chairman of the steering committee of
the Workshop on Models and Algorithms for Planning and Scheduling Problems. He is
on the editorial boards of ACM Transactions on Algorithms, INFORMS Journal of Com-
puting, Journal of Scheduling and Sustainable Computing: Informatics and Systems.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

