
Noname manuscript No.
(will be inserted by the editor)

Online Bottleneck Matching

Barbara M. Anthony · Christine Chung

June 19, 2013

Abstract We consider the online bottleneck matching problem, wherek server-
vertices lie in a metric space andk request-vertices that arrive over time each must
immediately be permanently assigned to a server-vertex. The goal is to minimize the
maximum distance between any request and its server. Because no algorithm can
have a competitive ratio better thanO(k) for this problem, we use resource augmen-
tation analysis to examine the performance of three algorithms: the naive GREEDY

algorithm, PERMUTATION, and BALANCE. We show that while the competitive ratio
of GREEDY improves from exponential (when each server-vertex has oneserver) to
linear (when each server-vertex has two servers), the competitive ratio of PERMU-
TATION remains linear when an extra server is introduced at each server-vertex. The
competitive ratio of BALANCE is also linear with an extra server at each server-vertex,
even though it has been shown that an extra server makes it constant-competitive for
the min-weight matching problem.

1 Introduction

We consider the online bottleneck matching problem, where we are givenk server-
vertices located in a metric space, andk request-vertices that arrive over time. As each
request-vertex arrives, it must be immediately and permanently matched to a server-
vertex. Our goal is to minimize the maximum distance betweenany request-vertex
and its assigned server-vertex.

The standard technique for studying algorithms for online problems is competi-
tive analysis. Thecompetitive ratioof an algorithm is the worst-case ratio of the cost

Barbara M. Anthony
Mathematics and Computer Science Department, Southwestern University, Georgetown, TX
E-mail: anthonyb@southwestern.edu

Christine Chung
Department of Computer Science, Connecticut College, New London, CT
E-mail: cchung@conncoll.edu



2 Barbara M. Anthony, Christine Chung

of the algorithm’s solution to the cost of the optimal offlinesolution (which knows
all request locations in advance). Kalyanasundaram and Pruhs (1993) proposed an
algorithm, PERMUTATION, in the context of the corresponding onlinemin-weight
matching problem, where the goal is to minimize the total (oraverage) distance be-
tween request-vertices and server-vertices. Without proof, they mentioned that PER-
MUTATION achieves a competitive ratio of2k− 1 for the online bottleneck matching
problem. Idury and Schäffer (1992) then proved that no algorithm can achieve a com-
petitive ratio better than approximately1.5k. The basic GREEDY algorithm, which
assigns each arriving request to the nearest available server-vertex, has a competitive
ratio that isΩ(2k) (see Section 2).

The prohibitive general lower bound on the problem and the exceedingly poor
performance of a simple and natural algorithm like GREEDY motivate us to consider
a benchmark that is less formidable than the optimal solution, in order to attain a
more informative analysis of these algorithms. Specifically, we employ aweak ad-
versary modelof analysis in pursuit of further insight on the performanceof these
(and related) algorithms for the bottleneck matching problem. The weak adversary, or
resource augmentation, model of analysis has long been used effectively in the study
of matching and scheduling problems (e.g., Kalyanasundaram and Pruhs (2000a,b);
Phillips et al. (2002); Chung et al. (2008)). Results obtained under this model can be
viewed as “bicriteria” results, which have also become an informative and success-
ful approach in other sub-fields of algorithms (e.g., Roughgarden and Tardos (2002);
Hartline and Roughgarden (2009)).

In our setting with resource augmentation, we ask how well the online algo-
rithm performs when it has multiple servers (namely two) perserver-vertex, while
the optimal offline solution only has one; thus the online algorithm can service twice
as many request-vertices with each server-vertex. Following Kalyanasundaram and
Pruhs (2000b), we will use the termhalfOPT-competitive ratioto refer to the com-
petitive ratio of an online algorithm with server-verticesthat have two servers when
compared with an optimal offline solution with each server-vertex having a single
server.

Resource augmentation was used to study the corresponding online min-weight
matching problem in Kalyanasundaram and Pruhs (2000b). They showed that by hav-
ing two servers per server-vertex, the competitive ratio ofGREEDY improves from
Θ(2k) to a halfOPT-competitive ratio ofΘ(log k). They then proposed an algorithm
BALANCE, which is a modified form of GREEDY that is more judicious in its use of
the additional server at each server-vertex. They show thatBALANCE has a halfOPT-
competitive ratio ofO(1).

Our results for the online bottleneck matching problem fork ≥ 2 are as fol-
lows. (Naturally, when there is a single request-vertex andserver-vertex (k = 1) the
algorithms all perform optimally.)

1. GREEDY has a competitive ratio of at least2k−1, and at mostk2k−1.
2. PERMUTATION (proposed in Kalyanasundaram and Pruhs (1993) and Khuller

et al. (1994)) is(2k − 1)-competitive, and this is tight. This is comparable to
its performance for the min-weight objective, for which it is also(2k − 1)-



Online Bottleneck Matching 3

Table 1 Lower bounds and upper bounds for the various algorithms. All bottleneck objective results are
from the present work, though the PERMUTATION bounds without resource augmentation were hinted at in
Kalyanasundaram and Pruhs (1993). The result marked by† is immediate from the corresponding bound
without resource augmentation. BALANCE is only defined in the resource augmentation setting.

Algorithm

Objective Adversary GREEDY PERMUTATION BALANCE

LB UB LB UB LB UB

min-bottleneck
OPT 2k−1 k2k−1 2k − 1 2k − 1 N/A N/A
halfOPT (k + 1)/2 k − 1 k k Ω(k) k − 1

min-weight
OPTa 2k − 1 2k − 1 2k − 1 2k − 1 N/A N/A
halfOPT Θ(log k) b O(1) 2k − 1† Θ(1) b

a Kalyanasundaram and Pruhs (1993)
b Kalyanasundaram and Pruhs (2000b)

competitive. ThisO(k) upper bound on the ratio is asymptotically tight with the
Ω(k) general lower bound for the problem of Idury and Schaffer (1992).

3. GREEDY has a halfOPT-competitive ratio of no more than(k−1). Note that this is
an exponential improvement in competitive ratio from simply having two servers
available per server-vertex.

4. GREEDY has a halfOPT-competitive ratio of at least(k + 1)/2. Interestingly,
this is still exponentially worse than its performance for the corresponding min-
weight problem, where it has a halfOPT-competitive ratio of2 log k (Kalyanasun-
daram and Pruhs 2000b).

5. BALANCE (proposed in Kalyanasundaram and Pruhs (2000b)), a modifiedform
of GREEDY designed for the setting of multiple servers per server-vertex, has a
halfOPT-competitive ratio ofk − 1.

6. BALANCE has a halfOPT-competitive ratio of at least(1
c
+1)log(k+1)−1 = Ω(k).

This is in stark contrast with the fact that BALANCE has a halfOPT-competitive
ratio ofO(1) for the corresponding min-weight problem (Kalyanasundaram and
Pruhs 2000b).

7. PERMUTATION has a halfOPT-competitive ratio ofk and this is tight. (Note that
having two servers per server-vertex does not improve PERMUTATION’s asymp-
totic performance guarantee, as it did so dramatically withGREEDY.)

Table 1 summarizes these and related results.

While resource augmentation has the potential to improve the competitive ratio,
these results suggest that in some sense the bottleneck objective is more difficult than
the total distance objective. Resource augmentation greatly helps GREEDY for the
minimum weight objective, but none of the three algorithms break theΩ(k) bar-
rier for the bottleneck objective. Perhaps this can be explained by noting that for the
minimum weight objective, any sub-optimal assignment is mitigated by the total cost,
whereas with the bottleneck objective, a poor assignment can dominate, even with re-
source augmentation. Our results suggest that GREEDY can be a reasonable choice of



4 Barbara M. Anthony, Christine Chung

algorithm for the bottleneck objective with resource augmentation, due to its relative
simplicity, and comparable performance to BALANCE and PERMUTATION, despite
its decay in performance as its adversary gets stronger.

Section 2 provides some results for the algorithms without resource augmenta-
tion. We then consider three algorithms with resource augmentation: GREEDY (Sec-
tion 3), BALANCE (Section 4), and PERMUTATION (Section 5).

2 Preliminaries

Formally, the online bottleneck matching problem is as follows: Given a collection
S = {s1, s2, . . . , sk} of server-vertices in a metric spaceM , the online algorithmA
sees over time a sequence of request-verticesR = {r1, r2, . . . , rk} also inM . When
request-vertexri arrives, algorithmA must assign a server-vertexsσ(i) to service that
request, with cost equaling the distanced(ri, sσ(i)) (we use the terms cost and dis-
tance interchangeably). Once an assignment is made, it cannot be changed. WhileA
does not know the sequence of requests in advance, its goal isto minimize the bottle-
neck distance of the overall assignment, that is minimizemaxi d(ri, sσ(i)). We refer
to the assignment (or “matching”) that optimizes this objective as OPT. As is typical
of online problems, we use competitive analysis, and seek tominimize the worst-case
ratio of the online bottleneck cost to the optimal (offline) bottleneck cost. An online
algorithm isα-competitive if this ratio is at mostα for all possible instances. We use
cost(·) to represent the bottleneck weight of a particular assignment, e.g.cost(OPT).
Throughout the paper,ǫ > 0 represents an arbitrarily small constant, typically used
to break ties when assigning requests to servers.

We now prove a few basic results about the online bottleneck matching prob-
lem without resource augmentation that have been hinted at in the existing literature
(e.g., see the Conclusion of Kalyanasundaram and Pruhs (1993)). We consider both
the standard GREEDY algorithm, as well as PERMUTATION, introduced by Kalyana-
sundaram and Pruhs (a similar algorithm was also studied by Khuller et al. (1994)).
Note that the algorithm BALANCE is only defined when there are multiple servers per
server-vertex.

2.1 Analysis of GREEDY

As its name suggests, GREEDY assigns the nearest available server at a server-vertex
to each request-vertex as it arrives. While this algorithm can perform well on some
instances, GREEDY is exponentially bad against OPT. In fact, this can be exhibited by
the same instance of Kalyanasundaram and Pruhs (1993) that demonstrates GREEDY

is exponentially bad against OPT for the corresponding objective of minimizing total
weight.

Theorem 1 The competitive ratio ofGREEDY is at least2k−1 for the bottleneck
matching problem.



Online Bottleneck Matching 5

Proof Let M be a subspace of the real line, with the standard distance metric. Set
s1 = −1 − ǫ and si = 2i−1 − 1 for 2 ≤ i ≤ k. Let ri = 2i−1 − 1 for 1 ≤
i ≤ k. GREEDY assigns requestri to si+1 for i < k (as the request-vertices and
server-vertices are collocated), and then must assignrk to s1, for a bottleneck cost of
2k−1 + ǫ. OPT, however, matches eachri to the correspondingsi, giving cost(OPT)
= 1 + ǫ.

Theorem 2 The competitive ratio ofGREEDY is at mostk2k−1 for the bottleneck
matching problem.

Proof Let Ni be the partial matching constructed by GREEDY after i requests have
been revealed. Letwi be the cost of the bottleneck edge inNi. (Ties do not matter, as
the concern is the cost, not the particular bottleneck edge.) Let bi be the cost of the
bottleneck edge inMi. We can assume, without loss of generality, by renumbering
the vertices that GREEDY servicesri with si. We prove inductively thatwi ≤ i2i−1bi.
For i = 1, M1 = N1 and the result follows. Now assume that the result holds for
i− 1, and we verify that it holds fori.

If the weight of the edge(ri, si) selected by GREEDY to serviceri is at most
wi−1, then we are done. By Kalyanasundaram and Pruhs (1993), the weight of(ri, si)
is at most the sum of the weights of the edges inMi and the edges inNi−1, and the
sum of the weights inNi−1 is at most2i−1−1 times the sum of the weights inMi−1.
Thuswi is at most2i−1 times the sum of the weights inMi, as the minimum weight
matching can only increase with an additional request. Noting that the sum of the
weights inMi is at most the number of edges inMi times the weight of the most
expensive (i.e. bottleneck) edge gives thatwi ≤ i2i−1bi. Since this holds for alli,
andbk = OPT , the result holds.

2.2 Analysis of PERMUTATION

Informally, PERMUTATION assigns requests as follows. Note that the assignment of
request-vertices to server-vertices is a matching. To choose a server for requestri,
consider the optimal matching of the firsti requests, and the optimal matching of the
first i− 1 requests. There is exactly one server that is matched in the former scenario
and not in the latter. PERMUTATION matches that server to the current requestri.
Observe that PERMUTATION guarantees that if a request arrives at an unused server-
vertex, it is matched to the server at that server-vertex.

More formally, as defined in Kalyanasundaram and Pruhs (1993), letRi ⊂ R be
the firsti request-vertices. Apartial matchingof Ri is a perfect matching ofRi with
a subset of the servers ofS. Let M0 andP0 be empty. DefineMi to be the edges
that form a minimal weight partial matching onRi where the number of edges in
Mi −Mi−1 is minimized, choosing arbitrarily if multiple such matchings exist. Let
Si ⊂ S be the server-vertices incident to an edge inMi. Let Pi denote the partial
matching constructed by PERMUTATION after the firsti requests. PERMUTATION

constructsPi+1 by computingMi+1, assigningri+1 to the unique server-vertexs ∈
Si+1 − Si, and adding that edge to the matchingPi.



6 Barbara M. Anthony, Christine Chung

We now show that PERMUTATION is (2k − 1)-competitive, which was stated
without proof in the Conclusion of the preliminary version of Kalyanasundaram and
Pruhs (1993). The proof is similar to the proof in Kalyanasundaram and Pruhs (1993)
which shows that PERMUTATION is (2k − 1)-competitive for the online minimum-
weight matching problem.

Theorem 3 PERMUTATION is (2k−1)-competitive for the bottleneck matching prob-
lem.

Proof We prove inductively thatcost(Pi) is at most2i − 1 times thecost(Mi).
Clearly,P1 = M1, and the inequality holds. Assume that the inductive hypothesis
holds fori− 1, that is,cost(Pi−1) ≤ (2(i− 1)− 1) · cost(Mi−1).

Assume PERMUTATION services requestri with server-vertexsj . Consider the
bottleneck distance ofPi. By construction,Pi = Pi−1 ∪ risj. Thus,cost(Pi) is
the maximum ofcost(Pi−1) and d(ri, sj). Note also thatcost(Mi−1) is at most
cost(Mi). Thus, if thecost(Pi) is cost(Pi−1), then by induction it is at most(2(i −
1)− 1) · cost(Mi−1), which is at most(2i− 1) · cost(Mi). Otherwise, thecost(Pi)
is d(ri, sj).

LetM ′ be the union of the matchingMi−1 and the edgerisj . LetH beMi⊕M ′.
I.e., letH be the set of all edges that are in exactly one ofMi andM ′. Intuitively,H
captures the cascading effect of reassignments upon the arrival of the latest request
ri. (H appears again in Section 5, where it is discussed further.)H consists of one
alternating cycle (possibly empty). By the triangle inequality, we have thatd(ri, sj) is
at most the total cost of the edges inH , less itself. Thus,d(ri, sj) is at most the weight
of Mi−1 (defined as the sum of the costs of the edges inMi−1) plus the weight ofMi.
Recall thatcost(Mi−1) ≤ cost(Mi). Furthermore, since the bottleneck distance is
the largest edge in the matching, the sum of the weights of theedges in the matching
is at most the number of edges times the bottleneck weight. Thus,d(ri, sj) is at most
(2i− 1) · cost(Mi). ⊓⊔

Theorem 4 The competitive ratio ofPERMUTATION is at least2k− 1 for the bottle-
neck matching problem.

Proof Let M be a subspace of the real line, with the standard distance metric. Set
si = i for 1 ≤ i ≤ k. Let ri = i+ .5 + ǫ for 1 ≤ i ≤ k. PERMUTATION matchesri
to si+1 when it exists, and matches the final request,rk, to s1, for a bottleneck cost
of k − .5 + ǫ. OPT assignsri to si, so all edges have a cost of.5 + ǫ, which is thus
cost(OPT). Thus, the performance on this instance is(2k− 1 + 2ǫ)/(1 + 2ǫ), which
approaches2k − 1. (Theǫ could be removed if ties can be broken arbitrarily.) ⊓⊔

Resource augmentation was used in Kalyanasundaram and Pruhs (2000b) to show
that, for the min-weight objective, GREEDY has a halfOPT-competitive ratio ofO(log k),
in contrast with itsΩ(2k) competitive ratio without resource augmentation. Moti-
vated in part by these results, we turn to a resource augmentation setting for the
bottleneck objective.



Online Bottleneck Matching 7

si

ri
GreedyOPT

rb re

sb se

ra

sa

rc

sc

rd

sd

Fig. 1 An example response graph.

3 Bicriteria Analysis of GREEDY

Noting that “the poor competitive ratio of an intuitive greedy algorithm may not re-
flect the fact that it may perform reasonably well on ‘normal’inputs”, Kalyanasun-
daram and Pruhs (2000b) adopts aweak adversary model, in which the adversary
has fewer resources than the online algorithm. Their work address the online trans-
portation problem, which is a generalization of the min-weight matching problem.
We perform a similar analysis for the bottleneck matching problem, and show that
the improvement for GREEDY is more limited for our objective.

While each server-vertex in OPT can service exactly one request, the online algo-
rithm can assign requests to two servers at each server-vertex. Thus, as in Kalyana-
sundaram and Pruhs (2000b) we say that thehalfOPT-competitive ratioof an on-
line algorithmA is the supremum over all instancesI with at mostk requests of
A(I)/OPT (I) whereA has two servers available at each server-vertex, while OPT
only has one.

We now show that the halfOPT-competitive ratio for GREEDY is linear in the
number of requests. Since each server-vertexsi has two servers in the online setting,
we denote them bys1i ands2i as needed. Without loss of generality, we assume that
s2i is not used unlesss1i is already in use. The adversary has onlys1i available to it.
We first prove a lemma about theresponse graphG, defined in Kalyanasundaram and
Pruhs (2000b) to beG = (S ∪ R,E), whereE is the set of edges that includes the
online edge(ri, sσ(i)) and adversary edge(ri, si) for each requestri. See Figure 1
for an example.

Lemma 1 Each connected component ofG contains exactly one cycle.

Proof By Lemma 1 of Kalyanasundaram and Pruhs (2000b), there is at most one
cycle in each connected component of the response graphG. So it remains to show
that there is at least one cycle in each connected component of G. To do this, we will
show that a connected componentC of G cannot be a tree. Since a tree must have one
more vertex than edges, it suffices to show thatC has an equal number of edges and
vertices. We first observe that, because OPT is a perfect bipartite matching between
server-vertices and request-vertices inG, any connected component ofG must have
an equal number of server-vertices and request-vertices. (Otherwise, some connected
component would have one fewer server than request, and OPT would not be able to



8 Barbara M. Anthony, Christine Chung

match that extra request to any server.) Hence the number of vertices inC is 2 · RC ,
whereRC is the number of request vertices inC. Next we observe thatC must also
have2 · RC edges since each request-vertex inG must have exactly two incident
edges (one from the online algorithm and one from OPT). We have now shown that
C has an equal number of vertices and edges. ⊓⊔

Theorem 5 The halfOPT-competitive ratio ofGREEDY for the bottleneck matching
problem is at mostk − 1 for k ≥ 2 server-vertices.

Proof Let (ri, sj) be the online bottleneck edge in the response graph,G. (If there are
multiple edges with the maximum bottleneck cost, pick one arbitrarily.) Let (ri, si)
be the edge in OPT that serves requestri. If si = sj then we’re done. So we only
consider the case thatsi 6= sj. Now consider the connected component containing
ri. By Lemma 1 this connected component has exactly one cycle. Note that this cycle
may have trees joined to it at the vertices on the cycle. Observe that all such junctions
must represent a server-vertex, since each request can haveat most two incident edges
in the response graph, one for the online edge and one for the optimal edge. Consider
separately the cases whenri lies on the cycle, and when it does not.

If ri is a vertex on the cycle, then since only server-vertices canbe junctions,
both the online and offline edges incident onri must lie on the cycle. Removing the
online edge(ri, sj) from the cycle yields a tree which can be rooted atri. Since
there arek request-vertices andk server-vertices, there are at most2k vertices in the
tree. Furthermore, the tree contains alternating levels ofserver-vertices and request-
vertices. Each request-vertex has one child (the server-vertex chosen for it by OPT),
and each server-vertex can have up to two children (the online edges).

To upper bound the cost of the edge(ri, sj), it suffices to upper bound the distance
of the shortest path fromri to some server-vertexsx with s2x unused, since GREEDY

pickedsj instead ofsx. Sinceri is the root of the tree, it suffices to find the cost of
a path requiring the minimum number of edges that must be traversed to arrive at a
leaf. Consider a version of the tree where the edges from a request to its child are
contracted, thus resulting in a binary treeT with at mostk vertices. LetkT ≤ k refer
to the number of vertices in the contracted tree. Since a fullbinary tree would have
log(kT ) levels, a leaf ofT , which may or may not be full, is reachable in at most
log(kT ) edges. Uncontracting the edges (at most one per server-vertex) indicates that
in the original graph, there are at mostlog(kT ) optimal andlog(kT )− 1 online edges
between the root and some leaf, call itsa.

Now consider the cost of the path in the tree fromri to server-vertexsa, as in
Figure 2. By definition, any edge used in OPT must have cost at mostcost(OPT ).
Since all leaves of the tree are incident only with one edge, an OPT edge, the edge
(ra, sa) is an edge in OPT, and thus has cost at mostcost(OPT ). Proceeding fromsa
to the root, the next edge on the path is an online edge, call it(ra, sb). GREEDY chose
to assignra to sb rather thansa which had a server available, and thus has cost at
most the cost of the edge from(ra, sa), which is again at mostcost(OPT ). The next
edge in the path,(rb, sb) is an edge in OPT, and thus has cost at mostcost(OPT ).
The next edge, the online edge(rb, sc) again was again chosen by GREEDY over
the edge(rb, sa) and thus has cost at most the distance in the tree fromrb to sa,
which is bounded by the three edges previously mentioned in the path, for a total



Online Bottleneck Matching 9

GreedyOPT

sc
rf rb

sf sb

rh

sh

rg

sg

re

se

ra

sa
rd

sd

sk
ro rl

so sl
rq

sq

rp

sp

rn

sn

rm

sm
rs

ss

rr

sr

rcrk

si

ri

Fig. 2 The length of the bottleneck edge(ri, sj) (not pictured) is bounded by the distance from rootri to
leaf sa in this example tree, a subgraph of the response graph.

cost of at most3 · cost(OPT ). This process continues, with successive edges in OPT
having cost at mostcost(OPT ) and successive online edges having cost at most
(2h − 1) · cost(OPT ) whereh represents the height of the request in the tree with
the online edges contracted. As the edge incident tori in the subtree is an edge in
OPT, the final edge in the path fromsa to ri has cost at mostcost(OPT ). Thus,
the total cost of the path is at mostcost(OPT ) for each of thelog(k) edges in OPT
and

∑log(k)−1
h=1 (2h − 1) · cost(OPT ) for the online edges, giving

∑log(k−1)
h=0 2h ·

cost(OPT ) = (2log(k) − 1) · cost(OPT ) = (k − 1) · cost(OPT ). Hence, since
GREEDY assignedri to sj instead ofsa, the online bottleneck edge cost is at most
(k − 1) · cost(OPT ).

Now consider the case whereri does not lie on the cycle. Removing(ri, sj) from
the response graph partitions the original connected component into two connected
components, withri and the original cycle now in separate connected components. As
the original connected component contained exactly one cycle, the connected com-
ponent rooted atri is a tree. By the same process, the upper bound on the distance
from ri to some leaf server-vertexsa is at most(k − 1) · cost(OPT ). ⊓⊔

The example used in Kalyanasundaram and Pruhs (2000b) to provide a lower
bound for GREEDY for the online transportation problem gives a lower bound ofk/2
for GREEDY in this setting. We prove a slightly improved lower bound of(k + 1)/2
in Corollary 1 in Section 4.

4 Bicriteria Analysis of BALANCE

In this section we consider the BALANCE algorithm detailed in Kalyanasundaram and
Pruhs (2000b). We first define some convenient notation for our resource augmenta-
tion model. As in the previous section, each server-vertexsi in S is said to have a



10 Barbara M. Anthony, Christine Chung

primary servers1i and a secondary servers2i . Thus, while there arek vertices inS,
one for each request inR, the online algorithm effectively has2k servers to choose
from. For BALANCE, thepseudo-distancefrom a requestri to a primary servers1j is
the actual distanced(ri, sj), while thepseudo-distancefrom the same requestri to
the secondary servers2j is c · d(ri, sj), for a constantc > 1. (In Kalyanasundaram
and Pruhs (2000b), ac > 11 was specified.) BALANCE then uses GREEDY to assign
arriving requests to servers, based on their pseudo-distances. (Thus BALANCE with
c = 1 is precisely GREEDY.) Note also that BALANCE only applies in the resource
augmentation setting because it uses primary and secondaryservers explicitly.

We begin with a lower bound on the halfOPT-competitive ratioof BALANCE.

Theorem 6 The halfOPT-competitive ratio ofBALANCE for the bottleneck matching
problem is at least(1

c
+1)log(k+1)−1 = Ω(k), wherek is the number of requests and

c is the constant in the definition ofBALANCE.

Proof Consider the following example on the line, where at each location the number
of requests and server-vertices are powers of two. LetL0, L1, L2, . . . , Lm be the
m+1 server-vertex locations, whereLi has2m−i server-vertices. Similarly, them+1
request locations areR0, R1, R2, . . . , Rm whereRi has2m−i requests. LetL0 = −c,
R0 = 0, and for1 ≤ i ≤ m, Li = Ri.

We now determine the most extreme placement for the server-vertices so that
OPT will assign requests atRi to servers atLi but that BALANCE will choose not to
send any requests toL0 until the final request. Thus OPT will have a bottleneck cost
of c while BALANCE will pay c plus the location of the final server. Sincec is fixed,
the ratio will grow with the locationLm.

We break ties at our convenience. (Alternatively, a smallǫ > 0 could be used to
perturb the locations slightly to enforce such choices.)L1 must be at1 so that the
secondary servers atL1 (with a cost ofc · 1) are equally desirable as the primary
servers atL0 (cost ofc) for the requests atR0.L2 must be chosen so that the requests
atR1 consider the secondary servers atL2 (with costc ·d(L1, L2)) as desirable as the
primary servers atL0 = −c, with costc + 1. Thus,d(L1, L2) =

c+1
c

, placingL2 at

2 + 1
c
. Repeating this process,Li can be placed at

∑i

j=1

(

i

j

)

1
cj−1 for all 1 ≤ i ≤ m.

We now find a closed form for the location of serverLm, as shown in (1).

Lm =

m
∑

j=1

(

m

j

)

1

cj−1
= c

m
∑

j=1

(

m

j

)

1

cj
= c





m
∑

j=0

(

m

j

)

1

cj



− c

(

m

0

)

1

c0
. (1)

Using the binomial theorem on the summation gives the expressionc(1
c
+ 1)m − c.

Thus, ifLm is the rightmost server, the bottleneck distance fromL0 to Lm is c(1
c
+

1)m.
Note that the total number of requests isk =

∑m

i=0 2
i = 2m+1 − 1. Thusm =

log(k+1)−1. Thus the bottleneck cost for BALANCE is c(1
c
+1)log(k+1)−1 wherek

is the number of servers/requests, and the bottleneck cost for OPT isc. If c is a fixed
constant, then the lower bound on the competitive ratio is(1

c
+ 1)log(k+1)−1. ⊓⊔

Corollary 1 The halfOPT-competitive ratio ofGREEDY for the bottleneck matching
problem is at leastk+1

2 , wherek is the number of servers.



Online Bottleneck Matching 11

Proof Noting thatc = 1 is precisely GREEDY, observe that ifc = 1 this gives a
competitive ratio of2log(k+1)−1 = k+1

2 .

We now show that the upper bound on the halfOPT-competitive ratio of BAL -
ANCE is a matchingO(k).

Theorem 7 BALANCE has a halfOPT-competitive ratio ofk for the bottleneck match-
ing problem.

Proof The same argument as for the GREEDY upper bound (Theorem 5) applies.
Note that it holds because the server-vertexsa used in the argument is a leaf of the
tree, which means the online algorithm has not used either ofits servers. Thus the
pseudo-distance to that vertex in BALANCE is the same as the original distance in
GREEDY.

5 Bicriteria Analysis of PERMUTATION

We next consider PERMUTATION with resource augmentation. As before, each server-
vertexsi has two servers in the online setting, the primary servers1i and the secondary
servers2i . Without loss of generality, we assume that a secondary server can only be
used if the corresponding primary server is used. Again, we compare PERMUTATION

to OPT which can serve exactly one request per server-vertex.
We now note how the definition of PERMUTATION from Section 2.2 applies to

the resource augmentation setting. LetSaug be the set of2k servers available to the
online algorithm. Then apartial matchingof the firsti requests is a perfect matching
of these requests with a subset ofSaug. DefineMi to be the set of edges in a minimal
weight partial matching of the firsti requests that is “most similar” toMi−1, in the
sense that the number of edges inMi − Mi−1 is minimized. LetSi ⊂ Saug be the
set of servers incident to an edge inMi. By convention,M0 is empty.

Suppose that PERMUTATION services requestri with a serversxj at vertexsj .
Then defineM ′ to be the union ofMi−1 with the edge(ri, sxj ). Let Pi denote the
partial matching constructed by PERMUTATION for the firsti requests.

Intuitively, it may seem that PERMUTATION should benefit substantially from re-
source augmentation; the availability of a secondary server seemingly allows the al-
gorithm to ‘correct’ itself if a request arrives and finds that the primary server it would
have used in OPT was already in use. Yet, PERMUTATION has a halfOPT-competitive
ratio ofk and this is tight, as illustrated by the following lower bound instance and a
matching upper bound guarantee. This is in comparison with its competitive ratio of
2k − 1 in the absence of resource augmentation.

Theorem 8 PERMUTATION has a halfOPT-competitive ratio ofΩ(k) for the bottle-
neck matching problem.

Proof Fix a small constantǫ > 0. Without loss of generality, letk be odd. Con-
sider the following instance, as depicted in Figure 3 fork = 9. Server vertices and
requestssi, ri for 1 ≤ i ≤ k with i odd are placed along the line, in the order



12 Barbara M. Anthony, Christine Chung

s1 r1 s3 r3 s5 r5 s7 r7 s9 r9

s2

r2

s4

r4

s6

r6

s8

r8

9 + 5ǫ

1 + ǫ 1 + ǫ 1 + ǫ 1 + ǫ 1 + ǫ1 1 1 1

1 1 1 1

1 + 2ǫ 1 + 2ǫ 1 + 2ǫ 1 + 2ǫ

M9 Permutation OPT

Fig. 3 Even with resource augmentation, PERMUTATION’s cost can still bek · cost(OPT).

s1, r1, s3, r3, . . . , sk, rk where the distance betweensi andri is 1 + ǫ, and the dis-
tance betweenri andsi+2 is 1. For eachi ≥ 3, let requestri−1 be1 away fromsi,
and let server-vertexsi−1 be at a distance of1+2ǫ from ri−1. All other distances are
additive based on this graph.

Since PERMUTATION assigns requests based onMi, note thatM1 assignsr1 to
s13. Thus, PERMUTATION does the same. InM2, this assignment remains, andr2 is
assigned tos23, and again PERMUTATION behaves identically. In general,Mj for j <
k behaves as follows: ifj is odd,rj is assigned tos1j+2 and ifj is even,rj is assigned
to s2j+1. PERMUTATION’s assignments are identicallyMj for j < k. Naturally, this
pattern cannot continue for requestrk; observe thatMk that shares only about half
of its edges withMk−1. In particular,Mk assignsri to s1i for i odd, and assignsrj to
s2j+1 for j even. Thus, PERMUTATION assigns the final requestrk to the only server
used inMk that was not used inMk−1, that is,s11. Hence, PERMUTATION assignsrk
to s1, for a bottleneck cost ofk + k+1

2 ǫ (its other assignments all have cost1).
Observe that OPT matches eachri to its correspondingsi, for a bottleneck cost

of 1 + 2ǫ. Hence, PERMUTATION has a halfOPT-competitive ratio ofΩ(k). ⊓⊔

We now develop a sequence of lemmas which show thatcost(PERMUTATION)
is at mostO(k) · cost(OPT ) for any instance. As in Kalyanasundaram and Pruhs
(1993), letH := Mi ⊕ M ′. For convenience, we say that a server isin H if there
is an edge inH incident on the server. Lemma 3, which says that any given server-
vertex appears at most once inH , uses a “displacement sequence” in its proof which
provides some intuition for the choice ofH .

Lemma 2 The servers used inM ′ are exactly the servers used inMi.

Proof The name PERMUTATION in Kalyanasundaram and Pruhs (1993) comes from
maintaining the invariant that “for alli, the vertices inS incident to an edge inMi

are exactly the vertices inS that are incident to an edge inPi.” By Lemma 3.2 of
Kalyanasundaram and Pruhs (1993),Si andSi−1 differ by exactly one server. Thus,
by definition of how PERMUTATION choosessxj , at each stepi, Mi andMi−1 ∪
(ri, s

x
j ) have used the same servers. ⊓⊔

Corollary 2 H is a single alternating cycle.



Online Bottleneck Matching 13

Proof As in Kalyanasundaram and Pruhs (1993), this follows immediately from server
vertices inMi andM ′ being identical (Lemma 2). ⊓⊔

Lemma 3 If s1ℓ is in H , thens2ℓ is not inH , and ifs2ℓ is in H , thens1ℓ is not inH .

Proof Suppose for the sake of a contradiction thatH contains both the primary server
and corresponding secondary server for somesℓ. By Lemma 2,s1ℓ ands2ℓ must each
be used in bothMi and inM ′. Let requestsra andrb be assigned tos1ℓ ands2ℓ , respec-
tively, by matchingMi. Let requestsr′a andr′b be assigned tos1ℓ ands2ℓ , respectively,
in M ′. To prove the lemma, it suffices to prove the following claim.

Claim: if r′a 6= ra andr′a 6= rb, thenr′b = ra or r′b = rb. In other words, at least
one of the two requests matched to a server ofsℓ in Mi must also be matched to a
server ofsℓ in M ′. Assume not. Sor′a 6= ra andr′a 6= rb, andr′b 6= ra andr′b 6= rb.
Let sj be the server-vertex assigned tori in M ′.

Casesℓ 6= sj . Then, sinceM ′ = Mi−1 ∪ (ri, sj), in Mi−1 we must also have
r′a → sℓ andr′b → sℓ, where “→” means “is assigned to.” So upon the arrival ofri,
in the transition fromMi−1 toMi, bothr′a andr′b were displaced byra andrb.

Define thedisplacement sequence ofri to be a sequence of server vertices and
requests affected by the arrival ofri, written as follows:

ri −→ si L99 r1 −→ s1 L99 r2 −→ s2...

where forward-edges are fromMi and backward edges are fromMi−1. Here,r1 is a
request that was “displaced” fromsi upon the arrival ofri; it was displaced to server-
vertexs1. Thenr2 is a request that was displaced froms1 by r1, ands2 is the server-
vertex it was displaced to, and so forth. Note that each server-vertex in this sequence
can only have one incoming backward edge because it only has one incoming forward
edge. Further note that if a server-vertex is not in the displacement sequence ofri,
then it must be matched to the same requests as it was inMi−1, since otherwise
the optimality ofMi−1 or Mi or the assumption thatMi is the most similar optimal
matching toMi−1 would be violated. Sosℓ must be in the displacement sequence
of ri. Sincesℓ has two displaced requests,r′a andr′b, thensℓ must appear twice in
the sequence. But if it appears twice in the sequence, then there is a “cycle” in the
sequence. Consider the displacements just in this cycle. The total cost of the forward
edges in the cycle must be lower than the total cost of the backward edges, otherwise
this cycle would not be present in the displacement sequenceof ri, it would just be
cut out altogether (by optimality ofMi). But if the total cost of the forward edges is
less than the backward edges, thenMi−1 was not optimal.

Casesℓ = sj. Without loss of generality, let us assume thatr′a = ri. Thus in
Mi−1, only one request was assigned tosℓ and it wasr′b. So upon arrival ofri, ra was
assigned tosℓ andr′b was replaced byrb. This means in the displacement sequence
of ri, sℓ again must appear twice, giving the same contradiction as inthe previous
case. ⊓⊔

Now consider the server-verticesMi uses exactly once (i.e. only their primary
servers). The next lemma says at most one of these server-vertices can appear inH .

Lemma 4 Let s1i be inH . If an edge ofMi is not incident ons2i , then for all other
serverss1j in H , an edge ofMi must be incident ons2j .



14 Barbara M. Anthony, Christine Chung

Proof Note that by assumption, a secondary server cannot be used unless its primary
server is used. Recall thatH := Mi ⊕M ′. Consider the arrival ofri, and the change
that occurs betweenMi−1 andMi. If ri is assigned byMi to a server that was unused
in Mi−1, then by definition of PERMUTATION, sj = si, and henceM ′ = Mi. Thus
H is empty, and no primary servers appear inH .

If in Mi requestri is assigned to a server of vertexsi that was used inMi−1, the
request assigned to that server inMi−1 must be reassigned, or displaced. Thus, we
can construct a displacement sequence ofri, denoted by a sequence of server-vertices
and requests affected by the arrival ofri, written as follows:

ri −→ si L99 r1 −→ s1 L99 r2 −→ s2 · · · st

where, again, forward edges are fromMi and backward edges are fromMi−1.
Note that by Lemma 2, the servers used inMi are exactly those used inM ′. Thus,

sinceM ′ = Mi−1 ∪ (ri, sj), sj is used once more inMi than it is inMi−1, and all
other server-vertices are used the same number of times inMi as inMi−1.

Only server-vertices that are in the displacement sequencecan appear inH ; all
others have exactly the same requests assigned to them inMi andM ′.

Consider an arbitrary serversℓ in the displacement sequence that has its primary
server but not its secondary server used inMi. Look at the displacement sequence
from sℓ to st. Since the secondary server atsℓ is unused inMi, rk+1 was not forced
to be displaced fromsk to sk+1, but rather could have used said secondary server at
sℓ. Thus, the forward edges (those fromMi) in the displacement sequence fromsℓ to
st must cost less than the backward edges (those fromMi−1). But this contradicts the
optimality ofMi−1, since the assignments that represent these forward edges could
have been made inMi−1 as well. Hence, there can be no edges fromsℓ to st, and
thus the only primary server in the displacement sequence that can be used without
the corresponding secondary server being used is the final one,st. ⊓⊔

Theorem 9 PERMUTATION has a halfOPT-competitive ratio ofO(k) for the bottle-
neck matching problem.

Proof Letαk be the number of primary servers used by PERMUTATION. (This is the
same as the number of primary servers used byMk.) Since a secondary server is only
used if its corresponding primary server is used, there are(1 − α)k server-vertices
with neither their primary nor secondary server used. Sinceexactlyk requests are
served, there must be(1 − α)k secondary servers used. Together these guarantee
1 ≥ α ≥ 1

2 .
Let the bottleneck edge of the final PERMUTATION assignment be(ri, sj). Now

consider the graph ofH after the arrival ofri. Recall that by Corollary 2,H is a
single alternating cycle. As in Kalyanasundaram and Pruhs (1993), by the triangle
inequality, the weight of the newest edge(ri, sj) is at most the aggregate weight of
the edges inH minus its weightd(ri, sj). Thus, if we can bound the number of edges
in H by n, then the bottleneck edge for PERMUTATION is at mostn − 1 times the
bottleneck edge inMi, as the cost of the bottleneck edge only increases fromMi−1

toMi.
If for every primary server that is used inMi, the corresponding secondary server

is also used inMi, i.e.,α = 1
2 , then by Lemmas 3 and 4,H is an alternating cycle with



Online Bottleneck Matching 15

at mostk/2 server vertices (and the same number of requests), for at most k edges. If
instead the number of primary servers used exceeds the number of secondary servers
used, thenαk − (1 − α)k ≥ 1 which guarantees thatα ≥ k+1

2k . By Lemmas 3
and 4,H contains at most(1 − α)k + 1 servers, and thus the number of edges in
H is maximized whenα is as small as possible. Plugging in the lower bound onα
gives k+1

2 servers, guaranteeing at mostk + 1 edges inH . Hence, in either case,
PERMUTATION costs at mostk more than the bottleneck edge inMi; the optimality
of Mk and the bottleneck edge ofMi monotonically non-decreasing asi increases
complete the proof. ⊓⊔

6 Conclusion

Resource augmentation results in a substantial improvement in the performance of the
GREEDY algorithm for the bottleneck matching problem, from an exponential lower
bound to a guarantee linear in the number of requests. While still exponentially worse
than its performance for the objective of minimizing total distance, it is a natural al-
gorithm that is easy to implement. Two algorithms that perform notably better than
GREEDY for the min-weight objective (PERMUTATION and BALANCE) also have lin-
ear competitive ratios for the bottleneck objective with resource augmentation. These
results suggest that in some sense the bottleneck objectiveis more difficult than the
total distance objective, as none of the three algorithms break theΩ(k) barrier for the
bottleneck objective. Determining if the lower bound (under resource augmentation)
is in factΩ(k) remains an open question.

References

C. Chung, K. Pruhs, and P. Uthaisombut. The online transportation problem: On the exponential boost of
one extra server. InLATIN, pages 228–239, 2008.

J. D. Hartline and T. Roughgarden. Simple versus optimal mechanisms. InACM Conference on Electronic
Commerce, pages 225–234, 2009.

R. Idury and A. Schaffer. A better lower bound for on-line bottleneck matching, manuscript. 1992.
B. Kalyanasundaram and K. Pruhs. Online weighted matching.J. Algorithms, 14(3):478–488, 1993.

Preliminary version appeared inSODA, pp. 231-240, 1991.
B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. J. ACM, 47:617–

643, July 2000a. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/347476.347479. URL
http://doi.acm.org/10.1145/347476.347479. Preliminary version appeared inFOCS,
pp. 214-221, 1995.

B. Kalyanasundaram and K. Pruhs. The online transportationproblem. SIAM J. Discrete Math., 13(3):
370–383, 2000b. Preliminary version appeared inESA, pp. 484-493, 1995.

S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for weighted bipartite matching and
stable marriages.Theor. Comput. Sci., 127:255–267, May 1994. ISSN 0304-3975. doi: 10.1016/0304-
3975(94)90042-6. URLhttp://dl.acm.org/citation.cfm?id=179131.179134.

C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via resource augmentation.
Algorithmica, 32(2):163–200, 2002. Preliminary version appeared inSTOC, pp. 140-149, 1997.

T. Roughgarden and́E. Tardos. How bad is selfish routing?J. ACM, 49(2):236–259, 2002. Preliminary
version appeared inFOCS, pp. 93-102, 2000.


