
MISTA 2015

Fairness in employee scheduling

Erica Stockwell-Alpert · Christine Chung

1 Introduction

In commercial, industrial, and retail settings, it can be tedious and difficult to find a schedule
for workers that fills every shift, gives every employee the hours they need, and does not
exceed the company’s budget. There may be a large number of shifts of varying lengths, all
of which require a minimum amount of coverage, as well as a large number of employees
who each require a different number of hours of work per week (or scheduling period).

We consider the problem of finding a work schedule that satisfies all employee and shift
requirements: where each employee has a minimum number of hours they must work, each
shift must be covered by a minimum number of employees, each employee has a set of
shifts they are available to work, and there is a limit on the total number of hours available
for distribution. We show that deciding whether a feasible schedule exists (one where each
employee is working at least their required number of hours) is NP-complete. We then con-
sider the corresponding NP-hard optimization goal of finding the most fair schedule, where
the least “satisfied” employee is as satisfied as possible. That is, we wish to minimize the
maximum ri−hi, where hi is the hours assigned to employee i and ri is the number of hours
employee i is required to work.

In game-theoretic terms, rather than the utilitarian objective of maximizing the aver-
age satisfaction over the employees, we focus on the egalitarian objective of maximizing
the satisfaction of the least-satisfied employee, i.e., looking for a solution that is as fair as
possible.

We are intentionally ambiguous about the source of the parameter ri, since it can be in-
terpreted as the number of hours the employee specifies they wish to work, or might instead
be specified by an employer/manager as a minimum number of hours an employee must
work based on work regulations, bookkeeping logistics, etc.

Our problem, which we call the Employee Satisfaction Problem (ESP), has similarities
to many employee timetabling problems (ETPs) that have been studied. Much of the work on

Erica Stockwell-Alpert
NorthPoint Digital, Boston, MA
E-mail: estockwell-alpert@northpointdigital.com

Christine Chung
Department of Computer Science, Connecticut College, New London, CT
E-mail: cchung@conncoll.edu

ETPs has been in the artificial intelligence and operations research communities; numerous
experimental studies have been conducted using heuristic methods such as local search,
branch-and-bound, genetic algorithms, constraint programming and ILP solvers, e.g., see
[1–3,10,18,20,21]. However the variants of timetabling problems in previous works have
different constraints and objectives from ours. In particular, they do not focus on fairness to
employees. Another point of contrast is that we provide a formal worst-case guarantee on
the quality of our algorithm’s solution relative to the optimal solution.

Another important distinction between our problem and many other timetabling prob-
lems is that our employee requirements are defined in terms of hours, rather than shifts. The
difference in the shift lengths is a very real and practical issue, e.g., an employee who is
given a series of 3- or 4-hour shifts rather than 8-hour shifts may not actually be working
enough hours to support themselves. And indeed, the differing shift durations are the crucial
factor in the intractability of ESP.

1.1 Related work

There is a prodigious amount of work done in timetabling, shift assignment, personnel
scheduling, and the like. We mention here some of the works that have more significant
similarities to ours.

The ESP is similar in nature to the timetable problem studied early on by Gotlieb [16,
15], which Even et al. later show to be NP-complete [13]. They consider the problem of
scheduling teachers in a school to class periods, and their problem has many parallels to
ours. But while classes may only be taught by one teacher, the work shifts (“classes”) in
our problem each have a positive integer parameter specifying the minimum number of
employees (“teachers”) that must be assigned to it. Each teacher in Gotlieb’s problem also
has a required number of hours that they must teach each class, while our employees simply
have a minimum total number of required hours they must work.

Cooper and Kingston [9] demonstrated intractability of timetabling problems in assorted
ways, the most similar to ours of which is referred to as “intractibility owing to meeting
size,” which roughly translates to intractability owing to shift length in our problem. But
again the parameters and details of the problems they study have meaningful differences
from ours. Their timetabling problem is more complicated, requiring multiple sets to be
assigned to the ”shifts,” with the requirement that certain members of set A be placed on
the same shift as certain members of set B, in addition to the basic availability constraints.
Aloul et al. proposed a SAT-based approach to solve a variant of employee timetabling [1].
In their formulation, employee requirements are defined in terms of minimum days rather
than minimum hours, all shifts are considered equal, and they seek to minimize the number
of idle workers.

A wide variety of techniques have been used to solve timetabling problems. To name a
few, Aloul et al. [1,2] examined Boolean satisfiability and ILP-solvers; Boyer et al. [4] used
a branch-and-price algorithm to ensure that employees are only assigned to tasks they are
capable of; Elahipanah et al. (2013) use a branch-and-bound search tree [1,2,4,12]. Robin-
son et al. [22] studied a personnel scheduling problem where a set of tasks must be assigned
to a set of employees during specific task intervals with the objective of minimizing labor
costs. They, along with a later work [5], propose a network flow solution, but in this setting
the employees have already been assigned their shifts, and the flow network is for assigning
tasks within that schedule. In our work, we also use a network flow-based algorithm, but our

algorithm is used to assign employees to shifts, the problem setting is quite different, and we
provide a formal gaurantee on how closely our algorithm approximates an optimal solution.

The scheduling problem most similar to our our own is probably the nurse rostering
problem, as it is concerned with fairness to employees [6–8,17,19]. Approaches to solving
the nurse rostering problem include tabu heuristic search [6]; variable depth search [7]; and
heuristic ordering hybridized with a variable neighborhood search [8]. The nurse rostering
problem has similar constraints as ESP: there is a set of shifts available for each day (typ-
ically “day,” “night,” and “late night”); an employee has a set availability, and cannot be
scheduled when they are unavailable; an employee can only be given one shift per day (this
restriction is not necessary for ESP, but we address how to handle this restriction) [19]. The
key difference between ESP and the nurse rostering problem is that in ESP, shifts may vary
in length, so employee satisfaction is determined based on total hours rather than total num-
ber of shifts assigned, and one set of shifts may satisfy an employee while an equal number
of shorter shifts may not.

1.2 Contributions

We show that the decision version of ESP is NP-complete. We then present an algorithm
that solves a special case of ESP where shifts are of the same length. We further show that
for instances that admit a feasible employee schedule (one where mini hi/ri ≥ 1), the same
algorithm gives approximation guarantees for two variants of our problem: (1) when the
“required hours” ri for each employee i are interpreted to be a minimum number of hours
that the employee must work, and additional hours above ri add to employee satisfaction,
and (2) when the “required hours” ri for each employee i are in fact interpreted to be the
desired hours of the employee, and hence any additional hours do not add to employee
satisfaction, so we cap OPT = mini hi/ri at 1.

In the first case, we learn that the further the budget of total available hours k surpasses
the total required hours of all employees R, the better the fairness guarantee. And in both
cases, keeping all shifts similar in length also improves the fairness guarantee. In particular,
in the second case, our algorithm approximates the value of the optimal solution to within
an additive

δ ≤ tmax− tmin

tmax

where tmin and tmax are the lengths of the shortest and longest shifts, respectively.
However, these results are stipulated by the fact that we allow for a (reasonably bounded

amount of) budget overflow. Note that in real world settings tmin and tmax may not be dramat-
ically different, and the closer they are, the better the approximation guarantee and the lower
the budget overflow. Furthermore, in any instance where k/R ≥ tmax/tmin, our algorithm is
guaranteed to satisfy all employee requirements, i.e., for every employee ei, hi ≥ ri.

2 Model and preliminaries

The Employee Satisfaction Problem (ESP) can be formalized as follows. We are given as
input:

1. A total number of hours available for distribution, k
2. A set of shifts S = {s1,s2, . . . ,sn}, where for each shift j = 1...n, we have:

– a positive integer t j, the length of shift j

– a positive integer m j, the minimum number of employees needed to cover shift s j
3. A set of employees E = {e1,e2, . . . ,em}, where for each employee i = 1...m, we have:

– Si ⊆ S, the subset of shifts that employee i is available to work
– a positive integer r j, the minimum number of hours that employee ei must be sched-

uled to work

We make the following basic assumptions on the input, without which the instance
would be trivially infeasible.

1. k ≥ ∑s j∈S m jt j, i.e., there are at least as many hours in the budget as the shifts require
2. k≥∑ei∈E ri, i.e., there are at least as many hours in the budget as the employees require

For convenience and without loss of generality, we also make the assumption that ri ≥
tmin for i = 1...m. (If ri < tmin for an employee ei, we can round ri up to tmin because, since
ri > 0, any employee must work at least 1 shift, and it is not possible to assign any employee
less than 1 tmin-hour shift.)

A solution to the problem (or schedule or assignment) is a mapping σ : E → 2S of
employees to sets of shifts they are scheduled to work such that the following constraints
are met.

1. for any employee ei, σ(ei)⊆ Si, [employee availability constraints]
2. for any shift s j, |{ei : s j ∈ σ(ei)}| ≥ m j, and [shift requirements]
3. ∑ei∈E ∑s j∈σ(ei) t j ≤ k [budget constraint]

We note that we have not yet addressed the issue of overlapping shifts. As currently
stated, the problem allows the same employee to be assigned to two shifts that overlap in
time. Indeed, the input as specified above does not even include information about which
shifts overlap. For the sake of simplifying presentation, we defer our solution to this issue
to Section 5.

The total number of hours assigned by schedule σ for employee ei is denoted

hi = ∑
s j∈σ(ei)

t j

(so the third constraint above can be rewritten ∑ei∈E hi ≤ k).
The decision problem ESP-D is to decide whether a schedule exists where all employees

work at least their required number of hours, i.e.,

max
ei∈E

ri−hi ≤ 0,

or, alternatively,
min
ei∈E

hi/ri ≥ 1.

We refer to such schedules as feasible.
We highlight both formulations of the objective here because maxi ri−hi may in fact be 0

or negative. Hence, rather than a standard multiplicative approximation to the corresponding
optimization problem, we use the second formulation, and give an additive approximation.1

Thus, our corresponding optimization objective for ESP will be to assign shifts to em-
ployees so as to

1 A multiplicative approximation of the second objective would be awkward and perhaps misleading since
this objective is effectively formulated as a percentage.

maximize min
ei∈E

hi/ri.

As previously mentioned, we also allow for two interpretations of the input parameters
ri: (1) ri represents the minimum required hours an employee must work, and satisfaction
level hi/ri may exceed 1, or (2) ri represents the maximum number of hours the employee
wishes to work, and hence satisfaction level hi/ri is capped at 1. Formally, the second in-
terpretation yields the following objective, and we refer to this variant of the problem as
ESPW.

maximize min
{(

min
ei∈E

hi/ri

)
,1
}
.

We provide results for both ESP and ESPW. For the remainder of this paper, we denote
T = ∑

n
j=1 t j, R = ∑

m
i=1 ri, tmin = min j t j, tmax = max j t j, rmin = mini ri, and rmax = maxi ri. We

use OPT or σ∗ to denote the optimal solution, and h∗i will refer to the total hours assigned
to employee i in σ∗. We use |σ | to denote the objective function value of the solution σ .
We sometimes abuse notation and use an algorithm’s name to also refer to the solution it
returns. An algorithm A is an additive δ -approximation for ESP if |A| ≥ |OPT |− δ for all
possible instances of ESP.

2.1 Intractability

We show that the decision version of the ESP problem is NP-complete by reduction from
PARTITION.

Theorem 1 ESP-D is NP-complete

Proof Given as assignment of employees to shifts it can easily be determined in polyno-
mial time whether hi/ri ≥ 1 for all ei ∈ E. It remains to show that ESP-D is NP-hard.
Recall that the problem PARTITION is defined as follows. Decide whether a set of integers
{x1,x2, . . . ,xn} can be partitioned into two subsets of equal sum. Given an instance of parti-
tion, reduce it to ESP as follows. For each integer x j in the set of integers, we create a shift
of duration t j, with m j = 1. There are two employees with r1 = r2 = k/2. Both employees
are available to work every shift, and we set k = T , the sum of the shift durations. Note that
if a feasible schedule of shift assignments exists, then all of the shifts have been assigned
exactly once, and so the set of integers has been divided into two subsets of equal sum. If a
feasible assignment does not exist, there must be no way to partition the integers. ut

3 The algorithm

In this section we look at a special case of ESP-D to provide context and build intuition for
our proposed algorithm. Specifically, we demonstrate that if all shifts are the same length,
the problem can be solved efficiently. In this case, the problem can be solved in polynomial
time by reducing to the circulation problem, which can be reduced to the classic max-flow
problem [14].

An instance of the circulation problem is comprised of a flow network G = (V,E), a
flow demand value dv for each node v ∈V , and a capacity specification [`e,ce] for each edge
e ∈ E , where `e is the minimum amount of flow required on edge e and ce is the maximum

Figure 1 An example of the graph G with 3 employees and 4 shifts. Note that the special case of tmin = tmax
is under consideration in this section.

capacity of edge e. Flow must pass along the edges such that the demands specified at each
node are satisfied, and capacity constraints on the edges are observed. Demand on the node
v is satisfied if (flow into v)− (flow out of v) = dv. A feasible circulation is a flow where all
the edge capacity bounds are observed and the demands on each node are satisfied.

Our network (see Figure 1) has an underlying bipartite graph structure with “employee
nodes” on one side and “shift nodes” on the other. A unit of flow from an employee node ui
to a shift node v j means the employee ei is assigned to shift s j.

We now present the algorithm that we will be analyzing for the general case where shifts
may be differing lengths, keeping in mind that in this section, we assume all shift lengths are
equal, hence tmin = tmax. We let d = bk/tminc, as this is the maximum number of shifts that
can be assigned without exceeding k when tmin = tmax. For each employee ei, the minimum
number of shifts that could satisfy their requirement ri is dri/tmaxe. Therefore, we use this
as the basis for the lowerbound on the edge incident to the employee node. Finally, we scale
each lowerbound by k/R to ensure that any excess hours will be distributed. Formally, the
graph G is constructed as stated in Algorithm 1.

We round down rik/R in the lowerbound expression to make sure that we do not overes-
timate our demand and preclude a feasible solution. Finally, we define the algorithm CIRC-D
here as Algorithm 2.

The circulation problem can be efficiently solved by reducing it to the max-flow problem
and using, for example, the classic Edmonds-Karp algorithm [11] which has a runtime of
O(|V |2|E |), or, in the context of our problem, O((n+m)2(nm)). (Better run-times can of
course be gained by using any of the series of successive improvements to the run time of
solving this classic problem.)

The proof of the following theorem may be found in the full version of this paper.

Theorem 2 If tmax = tmin, the algorithm CIRC-D correctly solves the problem ESP-D.

Algorithm 1: Reducing ESP to the Circulation Problem
Data: a set of employees E, a set of shifts S, the shift availability Si of each employee i, and a total

number of hours k
Result: A circulation flow network G

1 Add a “source” node s and a “sink” node t;
2 for each shift s j in S do
3 Add a node v j to the “right” side of G;
4 Add an edge (v j, t) with capacity bounds [m j,d];
5 end
6 for each employee ei in E do
7 Add a node ui to the “left” side of G;
8 Add an edge (s, ui) with capacity bounds [min {dbrik/Rc/tmaxe, |Si|},d] ;
9 for each shift s j ∈ Si do

10 Add an edge (ui,v j) with capacity bounds [0,1];
11 end
12 end
13 Add an edge (s, t) with capacity [0, d];
14 Give s a demand value of −d and t a demand value of d;
15 Give all other nodes a demand value of 0;

Algorithm 2: Circ-D
Data: ESP inputs
Result: Whether or not there is a feasible employee schedule

1 Follow the procedure in Algorithm 1 to construct the network G using the relevant inputs to the
ESP-D instance;

2 Run a circulation solver on the graph G;
3 if there is a feasible circulation then
4 output YES;
5 else
6 output NO;
7 end

4 Additive approximation guarantee

We use Algorithm 2 to approximate an optimal solution to the general ESP (where tmin
and tmax are not necessarily equal), save for the following modifications, and we refer to the
resulting algorithm as CIRC:

– In step 2 we return the circulation itself
– In step 3 we construct the assignment of employees to shifts by adding a shift s j to the

set σ(ei) for each edge (ui,v j) that has one unit of flow in the circulation. We then return
the assignment σ .

The circulation is the same as in Section 3; however, in the general case that tmin <
tmax, the lowerbound produced by dbrik/Rc/tmaxe on each edge (s,ui), i = 1...m, may be
fewer than the minimum number of shifts that could satisfy the requirement ri, and thus no
longer guarantees that hi ≥ ri. The budget restrictions are also effectively relaxed with d =
bk/tminc, which is now a potentially loose upperbound on the number of shifts the budget can
afford, and can allow more than k hours of shifts to be assigned. These effectively loosened
restrictions ensure that, if no feasible circulation is found, then no feasible assignment of
employees exists.

The proof of the following lemma may be found in the full version of this paper.

Lemma 1 If a feasible solution exists for an instance of ESP-D, a feasible circulation can
be found (by CIRC) in G.

Of course, the algorithm may return a feasible circulation when there is no feasible
assignment of employees to shifts, and it may indeed return an assignment that exceeds the
budget of k, which we will also provide worst-case bounds on. But Lemma 1 ensures that if
the algorithm does not return a solution, no feasible solution exists, which perhaps indicates
to the employer that the input values are unreasonable and must be reconsidered.

We note that the flow demand value d = bk/tminc is the minimum possible that still
ensures there will be a feasible circulation when there is a feasible assignment. Indeed, if d <
bk/tminc, there are instances with a feasible assignment where the circulation is infeasible.

As an interesting sidenote, we now show that if bk/Rc ≥ tmax/tmin, all employee require-
ments are guaranteed to be satisfied by CIRC.

Proposition 1 If bk/Rc ≥ tmax/tmin, then the solution returned by CIRC ensures that hi ≥ ri
for all i = 1...m.

Proof Due to the lowerbounds on edges out of s, each employee ei is guaranteed to be as-
signed at least dbrik/Rc/tmaxe ≥ dbk/Rcri/tmaxe shifts. Thus, we have hi ≥ dbk/Rcri/tmaxe ·
tmin. And with bk/Rc ≥ tmax/tmin, then hi ≥ dritmine/tmin ≥ ri. ut

This simple fact may imply a practical rule of thumb for employers: they should have
a budget of at least k >= (tmax/tmin)R total hours for distribution if they wish to guarantee
that employees can all work the number of hours they are required to.

Before proceeding with proving our guarantee on minimum employee satisfaction, we
first show that the budget overflow of CIRC can be reasonably small when (1) shift lengths
are all close in size (i.e., tmax− tmin is small), or (2) there is a large number of tmin-length
shifts in S.

Let nmin be the number of shifts of length tmin. The proof of the following lemma may
be found in the full version of this work.

Lemma 2 In the solution returned by CIRC, the budget k will not be exceeded by more than
b = tmax · (bk/tminc−nmin)+ tmin ·nmin− k

≈ k(tmax/tmin−1)−nmin(tmax− tmin).

As a possible rule of thumb for employers: the budget overflow is lower when the num-
ber and duration of maximum-length shifts is lower.

We now move onto the approximation guarantee for minimum employee satisfaction.
Let |CIRC| denote the objective function value of our algorithm’s solution. We start by giving
a lowerbound on the quality of our algorithm’s solution (the proof of which may be found
in the full version of this work).

Lemma 3 For any instance of ESP,

|CIRC| ≥ drmaxbk/Rc/tmaxe · tmin

rmax

Theorem 3 Assuming there is a feasible solution to ESP-D, and allowing for a budget
overflow of b, the algorithm CIRC provides an additive δ -approximation to ESP, where

δ ≤ T
rmax
− bk/Rctmin

tmax

Proof In any instance, the most hours that any employee can have is T : in the case where
they are assigned to every existing shift. Therefore, for any employee ei we have hi/ri ≤
T/ri; and hence the minimum satisfaction over all employees in OPT is at most T/rmax.

Combining this with Lemma 3:

|OPT|− |CIRC| ≤ T
rmax
− drmaxbk/Rc/tmaxe · tmin

rmax

≤ T
rmax
− bk/Rc · tmin

tmax

ut
We defer to the full version of this work the proof of the following theorem, which shows

that the above guarantee on the performance of CIRC for ESP (Theorem 3) is essentially
tight.

Theorem 4 There is an instance of ESP where

|OPT|− |CIRC|= δ ≥ T
rmax
− drmaxbk/Rc/tmaxetmin

rmax

In the case of the problem ESPW (where satisfaction levels hi/ri are always capped
at 1, which would be the case when the ri inputs represent employees’ maximum desired
hours rather than minimum required hours), we immediately arrive at the following simple
characterization of the guarantee of CIRC.

Theorem 5 Assuming there is a feasible solution to ESP-D, and allowing for a budget over-
flow of b, the algorithm CIRC provides an additive δ -approximation to ESPW, where

|OPT|− |CIRC|= δ ≤ tmax− tmin

tmax

Proof By Lemma 3, and since bk/Rc ≥ 1, we have

|CIRC| ≥ bk/Rctmin

tmax
≥ tmin/tmax.

By definition of ESPW we know that |OPT | ≤ 1, hence |OPT| − |CIRC| ≤ 1− tmin/tmax.
ut

We now demonstrate that Theorem 5 is tight.

Theorem 6 There is an instance of ESPW where

δ ≥ tmax− tmin

tmax

Proof The lowerbound on our algorithm for ESPW is demonstrated by a worst-case instance
described as follows (also see Figure 2). The instance has m = 4 employees, n = m+1 = 5
shifts, and k = T = 29. Employee requirements and availability are: r1 = 7,S1 = {s1,s2,s3};
r2 = 5,S2 = {s2,s3}; r3 = 5,S3 = {s1,s4}; r4 = 7,S4 = {s4,s5}.

Shift lengths and are alternating: t1 = 5, t2 = 7, t3 = 5, t4 = 7, and t5 = 5, and shift
requirements are m j = 1 for j = 1 . . .5. The lowerbound for each employee edge (s,ui),
i = 1 . . .m, is hence 1. d = bk/tminc= 5, which means there are 5 shifts available for distri-
bution among the employees. In the optimal solution, the shifts are assigned as illustrated in
Figure 2 for an objective function value of |OPT |= 1. However, another feasible circulation
exists (as illustrated) that does not satisfy all employees’ required hours, giving a minimum
satisfaction of tmin/tmax. Hence |OPT |− |CIRC|= δ ≥ 1− tmin/tmax. ut

Figure 2 An instance that demonstrates the lowerbound of δ for ESPW.

5 Overlapping shifts

Our algorithm as presented thus far assumes that shifts do not overlap. Any two shifts as-
signed to an employee must not share any hours or else the assignment is invalidated. In
order to resolve this and ensure that overlapping shifts are not assigned to the same em-
ployee, the following change can be applied to the circulation design.

For each employee ei, for every pair of overlapping shifts in {sx,sy} ∈ Si:

1. Remove the two edges (ui,vx) and (ui,vy).
2. Add a “median” node wi “between” the corresponding shift nodes vx and vy as follows.

Add an edge from ui to the median node wi.
Add edges from the median node wi to each of the two shift nodes vx and vy.
Set all edges to and from wi to have capacity [0,1].

3. If either of the shift nodes vx or vy now has two or more of these median nodes adjacent
to it (emanating from ui), further modify the graph as follows. For each such shift node
v j, j ∈ {x,y}, with adjacent median nodes (wi1 . . . wiµ):

Figure 3 Shifts s1 and s2 overlap, and shifts s2 and s3 overlap, but shifts s1 and s3 are not in conflict

For each edge (wik ,v j), k = 1 . . .µ:
Set its capacity to [0,1/µ]

An example output of this adjusted procedure is illustrated in Figure 3. In this example,
shifts s1 and s2 overlap, and shifts s2 and s3 overlap, but shifts s1 and s3 are not in conflict.

The algorithm must further be modified to prefer whole flows to fractional ones in its
tie-breaking; an available edge with capacity of 1 should be preferred over an available edge
with a fractional capacity. For example, in Figure 3, there are many different flows that will
saturate both edges leaving u1, but the one that sends whole units of flow over the edges
(w11,v1) and (w12,v3) is preferred.

The assignments of employees to shifts is determined as before: an employee i is as-
signed to a shift j if and only if there is one unit of flow from node ui to node v j. In particu-
lar, if there is less than 1 unit of flow from an employee node to a shift node, that employee
is not assigned to that shift.

With this additional procedure, the guarantees of the algorithm remain the same, but
now it is certain that no employee will be scheduled for overlapping shifts.

6 Conclusion

Our work shifts the focus of employee timetabling problems onto employee satisfaction.
We present an approximation algorithm for the egalitarian objective of maximizing mini-
mum employee satisfaction. ESP can be applied to many types of work environments where
varying weekly schedules are used. It addresses the concerns of both the management and
the employees: while we allow some budget overflow, we provide a bound for the overflow
amount, which the employer can make use of in setting their initial budget (k) value; em-
ployees are guaranteed a lowerbound on how many hours they will be given relative to what
they need, which promises that the schedule will be relatively fair; and all shift requirements
are satisfied, ensuring that every shift will have adequate coverage.

The quality of the guarantees are dependent on the input, specifically on the size differ-
ence between the shortest and longest shift in the set, the maximum employee requirement,
and the size of k.

Some important future directions include: (1) finding an algorithm with a better approx-
imation guarantee, (2) considering the more complex problem of allowing both a minimum
and maximum amount hours to be specified for each employee, and (3) considering the
employee’s ri values to be private information that must be extracted from the employee
truthfully (making it a mechanism design problem).

References

1. Aloul, F., Al-Rawi, B., Al-Farra, A., & Al-Roh, B. “Solving the employee timetabling problem using
boolean satisfiability.” in 2006 Innovations in Information Technology, November 19-21, 2006, Dubai,
4085403 (2006).

2. Aloul, F., Zahidi, S., Al-Farra, A., & Al-Roh, B. “Solving the employee timetabling problem using
advanced SAT & ILP techniques.” Journal of Computers, Vol. 8(4), pp. 851-858, 2013.

3. Artigues, C., Gendreau, M., Rousseau, L.M., & Vergnaud, A. “Solving an integrated employee
timetabling and job-shop scheduling problem via hybrid branch-and-bound.” Computers and Operations
Research, Vol. 36(8), pp. 2330-2340, 2009.

4. Boyer, V., Gendron, V., & Rousseau, L. “A branch-and-price algorithm for the multi-activity multi-task
shift scheduling problem.” Journal of Scheduling, pp. 1-13, 2013.

5. Brucker, P., & Qu, R. “Network flow models for intraday personnel scheduling problems.” Annals of
Operations Research, pp. 1-8, 2012.

6. Burke, E., Cowling, P., De Causmaecker, P., Vanden Berghe, G. “A Memetic Approach to the Nurse
Rostering Problem.” Applied Intelligence, Vol. 15(3), pp. 199-214, 2001.

7. Burke, E., Curtois, T., Qu, R., & Vanden Berghe, G. “A Time Pre-defined Variable Depth Search for
Nurse Rostering.” Technical Report, University of Nottingham, 2007.

8. Burke, E., Curtois, T., De Causmaecker, P., Post, G., Qu, R., Vanden Berghe, G. & Veltman, B. “A hybrid
heuristic ordering and variable neighbourhood search for the nurse rostering problem.” European Journal
of Operational Research, Vol. 188(2), pp. 330-341, 2008.

9. Cooper, T. B., & Kingston, J. H. (1996, October). The Complexity of Timetable Construction Problems.
In Practice and Theory of Automated Timetabling, Edinburgh, UK, August 1995.

10. Dowsland, K. “Nurse scheduling with tabu search and strategic oscillation.” European Journal of Oper-
ational Research, Vol. 106, pp. 393-407, 1998.

11. Edmonds, J., & Karp, M. “Theoretical improvements in algorithmic efficiency for network flow prob-
lems.” Journal of the Association for Computing Machinery, pp. 248-264, 1972.

12. Elahipanah, M., Dulniers, G., & Lacasse-Guay, E. “A two-phase mathematical- programming heuristic
for flexible assignment of activities and tasks to work shifts.” Journal of Scheduling, pp. 1-18, 2013.

13. Even, S., Itai, A., & Shamir, A. “On the complexity of timetable and multicommodity flow problems.”
SIAM J. Comput., Vol. 5(4), pp. 691-703, 1976.

14. Ford, L. R., and Delbert Ray Fulkerson. Flows in networks. Vol. 1962. Princeton University Press:
Princeton, 1962.

15. Gotlieb, C. C. (1963, January). The construction of class-teacher time-tables. In IFIP congress (Vol. 62,
pp. 73-77).

16. Gotlieb, C. C. (1962, January). The construction of class-teacher time-tables. In COMMUNICATIONS
OF THE ACM (Vol. 5, No. 6, pp. 312-313).

17. Holmes, H., Pierskalla, W., & Rath, G. “Nurse Scheduling Using Mathematical Programming.” Opera-
tions Research, Vol. 24(5), 1976.

18. Kragelund, L. “Solving a timetabling problem using hybrid genetic algorithms.” Software - Practice and
Experience, Vol. 27, pp. 1121-1134, 1997

19. Maenhout, B. & Vanhoucke, M. “Comparison and hybridization of crossover operators for the nurse
scheduling problem.” Annals of Operations Research, Vol 159, pp.333-353, 2007.

20. Meisels, A., Gudes, E., & Soloterevsky, G. “Combining rules and constraints for employee timetabling.”
Int’l Journal of Intelligent Systems, Vol.12, pp.419-439, 1997.

21. Meisels, A., & Shaerf, A. “Modelling and solving employee timetabling problems.” Annals of Mathe-
matics and Artificial Intelligence, Vol. 39(1-2), pp. 41-59, 2003.

22. Robinson, R., Sorli, R., Zinder, Y. (2005). Personnel scheduling with time windows and preemptive tasks.
Proceedings of the 5th International Conference on the Practice and Theory of Automated Timetabling,
Pittsburgh, August 2004.

