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Abstract. Congestion control at bottleneck routers on the internet is a long stand-
ing problem. Many policies have been proposed for effective ways to drop pack-
ets from the queues of these routers so that network endpoints will be inclined to
share router capacity fairly and minimize the overflow of packets trying to enter
the queues. We study just how effective some of these queuing policies are when
each network endpoint is a self-interested player with no information about the
other players’ actions or preferences. By employing the adaptive learning model
of evolutionary game theory, we study policies such as Droptail, RED, andthe
greedy-flow-punishing policy proposed by Gao et al. [10] to find the stochasti-
cally stable states: the states of the system that will be reached in the long run.

1 Introduction

Ever since the first congestion control algorithms for TCP endpoints were introduced
in [12], the important problem of congestion control at bottleneck routers on the In-
ternet has garnered wide-spread attention. Several algorithms have been proposed for
queue management and scheduling of packets in routers. Initially, such algorithms were
designed under the assumption that all packets arriving at the routers come from TCP
complying sources that produce packet flows with certain characteristics: all flows that
become aware of congestion at the router (by seeing some of their packets dropped)
will respond by reducing their transmission rates. However, TCP flows are not the only
ones competing for available bandwidth or space in router queues. UDP flows behave
in a completely different manner, tending to be more aggressive without sharing the
same congestion control profile as TCP. Moreover, the assumption that future users will
continue using the current TCP protocol seems questionable. Since there is no central
authority governing their behavior, as users compete for bandwidth, they may very well
change the way they respond to congestion.

Studying congestion control from a game theoretic perspective was therefore the
natural next step. Using a variety of models, game theory hasbeen used not only to
find Nash equilibria (NE) when users are self-interested androuters employ existing
methods, (e.g. FIFO with Droptail, or RED [8]) but also to design new router queuing
policies, aimed at reaching good social outcomes in the presence of such users [10].
Such “good social outcomes” include the avoidance of congestion at routers, and thus
avoidance of Internet congestion collapse, but also fairness of bandwidth sharing.

However, an approach commonly taken is to assume perfect information. Users
are assumed to know the transmission rates of others and the congestion levels at the



router, and use this information to compute a best response and optimize their utility.
Even though such assumptions are standard, and even necessary, in the study of NE,
they are not likely to be met in a setting like the Internet. Without such assumptions,
can the equilibria be reached? Could there be a set of states,none of them necessarily a
NE, such that the system gets essentially “trapped” cyclingamong the states in the set?
These are the questions we are aiming to answer in this work.

Using a simple yet general model of the game played by internet endpoints at in-
ternet bottleneck routers, we provide the first (to our knowledge) analysis of this prob-
lem using stochastic stability, a classical solution concept from the adaptive learning
model of evolutionary game theory. Evolutionary game theory’s adaptive learning set-
ting is suited especially well for the game of internet endpoints competing for bottleneck
router capacity. In traditional game theoretic settings, each player must assume all other
players are perfectly rational, and must be fully informed of each other’s actions and
preferences. When players are internet endpoints, such requirements seem unreason-
able and quite unlikely to be met. In our evolutionary setting, under adaptive learning’s
imitation play, players need only know what you would expectthem to know: what they
themselves experience in each round of play. Then they use simple heuristics to decide,
based on the results of their recent play, what strategy to employ for the next round.
The simplicity of the model but also its ability to cope with limited information, make
it particularly useful for modeling router congestion games.

To study our problem in this adaptive learning setting, we use a new model proposed
by Efraimidis and Tsavlidis [7] called thewindow game. This model is not only simple,
but more general than previous models in which players are usually assumed to be TCP
endpoints with specific loss recovery properties. In the window game, the endpoints
are modeled so that they can be thought of as using either TCP,UDP, or whatever
transmission protocol they choose. There aren internet endpoints, each seeking to send
an unlimited amount of traffic. But all endpoints encounter the same bottleneck router,
which has capacityC. Each of the endpoints is a player that chooses a strategy: an
integer-sized “window” between 0 andC. The window size can be thought of as the
amount of the router’s capacity being requested by the player, or the number of packets
being sent by the player. The amount of capacity that the router actually allocates to each
player is then determined by the router’s queuing policy andthe specified window sizes
(capacity requests) of the other users. The utility of a player is defined as the number
of successfully sent packets, minus the number of dropped packets times some factor
g ≥ 0. Hence,g represents the cost a player suffers by having one packet dropped.

We assume that this game is played repeatedly in rounds, in which every player
chooses a strategy to play using imitation dynamics: sampling the outcomes of the
rounds of play in its memory, and then imitating the strategythat served it best. How-
ever, with very small probability, each player fails to follow the imitation dynamics
and chooses a strategy at random. Then, loosely speaking, the set ofstochastically sta-
ble statesrepresents the set of strategy profiles that have positive probability of being
played in the long run, or, the states that the system eventually settles on. More details
can be found in Section 2.1.

Our Results. The policies we deal with here have been studied with respectto
Nash Equilibria before (see the Related Work section for more details), mainly though



assuming that the rates at which the sources send their packets is described by a given
rule, for instance, assuming Poisson rates. In our work, we make no such assumption,
but employ thewindow gameof Efraimidis and Tsavlidis [7]. We believe that this model
is simple enough to allow interesting theoretical analysis, but still captures the essence
of the game played between competing internet endpoints. Weextend the results in [7]
with respect to Nash Equilibria but also study the stochastic stability of the underlying
games.

We begin by analyzing the two currently most well-known and widely-used router
queuing policies: FIFO with Droptail and RED (Random Early Detection) [8]. When
Droptail is used, all incoming packets are simply dropped once the queue is full. We
show that for any reasonable value ofg, the only NE and the only stochastically stable
state is the state where all players sendg+1

g
C n−1

n2 packets. This implies, for instance,
that for a large number of flows and any value ofg ≤ 1 (g = 1 means that each
player is hurt by each lost packet about the same as the amountthey gain from each
successful packet), the router is getting hit by roughly more than twice as much traffic
as it has capacity. Next, we show that under RED queuing, in which the router starts
dropping packets preemptively as soon as its buffer reachesa certain thresholdT < C,
things cannot get much better. For reasonable values ofg, there is a single NE, which
constitutes also the single stochastically stable state, in which the congestion at the
router is still significant.

Finally we study a queue policy proposed by Gao et al. [10], inwhich any overflow
is compensated for by dropping the packets belonging to the most demanding flow.
This policy was designed, in a idealized setting, to have a unique NE such that the
router capacity is equally shared among all flows and overflowis avoided. They also
studied a non-idealized setting in which flows do not have perfect information, and all
sources are restricted to fixed-rate Poisson rates except one, which can be arbitrarily
aggressive. In this setting, they succeed at a more modest goal: the source that can
be arbitrarily aggressive should not outperform the best Poisson source by much. In
this work we show that this policy can actually do even better. We show that even if
flows have no information about one another, and all of them can arbitrarily adjust their
window sizes (so no flow is restricted to a fixed rate), the system will still converge to
the fair equilibrium under adaptive learning with imitation dynamics.

Even though the stochastically stable states for the queuing policies we study turn
out to coincide with the NE, what our results indicate is the following: even in the
chaotic internet setting, where players have extremely limited information about the
game and make instantaneous decisions, the NE will actuallybe reached.

Related Work. FIFO with Droptail is the traditional queue policy that has been em-
ployed widely in internet routers. As soon as the router queue is full, all subsequent in-
coming packets are dropped. For more information on Droptail and its variants, see [2].
RED [8] works similarly, but starts dropping packets with a certain probability as soon
as the number of packets in the queue exceeds a thresholdT < C. Both these policies
punish all flows in a similar manner, regardless of whether they are “responsible” for
causing the overflow or not. Specifically, the expected fraction of the demand of each
flow that gets through the router is the same among all flows, those with moderate de-



mands, and those with demands far exceeding their “fair share”. The result is that flows
with large demand can use more router capacity at the expenseof lower-demand flows.

There have been methods suggested for inhibiting such behavior. The Fair Queueing
algorithm [4] ensures the maxi-min fairness criterion: using round-robin for selecting
the outgoing packets, every flow can at least obtain its “fairshare.” Even though this is a
fair scheme, it comes at the cost of efficiency. It requires separate buffers for each queue
and a lot of book-keeping, making it unusable in practice. A method that achieves the
same result without the high computational cost at the routers was suggested in [19].
This method however, cannot be used independently in each router, as it depends on
receiving flow-specific information from other routers.

CHOKe [17], on the other hand, is a stateless queue management scheme, which can
be implemented in a router independently from what other routers use. When a packet
arrives to the queue, it is compared toM ≥ 1 packets chosen uniformly at random from
those currently in the queue; if it comes from the same sourceas any of them, then both
are dropped. There are both theoretical and experimental studies [20, 15] suggesting its
effectiveness at preventing greedy (e.g. UDP) flows from strangling moderate flows.
However, as the number of greedy flows varies, the parameterM must also change in
order to protect the more moderate flows from losing their fair share.

Gao et al [10] introduce a router queue management algorithm, which, unlike Fair
Queuing, does not require separate buffers for each flow, but, under some assumptions,
achieves the same (fair) NE as maxi-min fairness. The main idea is to keep track of the
“greediest” flow. Whenever there is an overflow, the algorithmdrops only packets that
belong to this flow.3 ThePrincealgorithm described in [7] works in a similar manner.
The algorithm in [10] was aiming to fulfill, among others, thefollowing two objec-
tives. First, in an idealized environment of full information, the profile corresponding
to maxi-min fairness is the unique NE. Second, removing the full information setup but
restricting all flows but one to being Poisson sources of fixedrates, the unrestricted flow
has no way of obtaining a throughput much better than that of the best Poisson flow.

There are several game theoretic results for congestion control. For a better in-
troduction, we refer the reader to [18] and [14]. Akella et al. [1] study the equilibria
of a TCP game, in which all flows use the Additive Increase Multiplicative Decrease
(AIMD) algorithm. This is the method currently employed by TCP endpoints. The strat-
egy sets consist of the possible values for the parameters ofthe algorithm. They show
that even though the older TCP endpoint implementations canlead to efficient equilibria
even with FIFO Droptail and RED router queue policies, this is no longer the case with
newer implementations. They show that some measure of “network efficiency” can be
established with a variant of CHOKe, assuming however that all flows are TCP. A lot
of work has been devoted to game theoretic models in which allflows originate from
Poisson sources and each source is allowed to vary the transmission rate [18, 5, 6]. The
inefficiency of NE is studied, mainly in the case of a single bottleneck router, but also in
more general networks [11]. Kesselman et al. [14] consider amodel in which the flows
are explicitly deciding when to send new packets, instead ofimplicitly modifying their
transmission rates.

3 Only in case that the overflow is greater than the number of packets of the greediest flow in
the queue, will packets from other flows be dropped as well.



An evolutionary game theoretic approach based on adaptive learning is used in [16]
to analyze a game in which users set transmission rates for optimally receiving multi-
media traffic. In [3], adaptive learning with imitation dynamics was used to analyze a
load balancing game.

The Window Game model we study here was first proposed in [7], where it was
used to find the NE in games between AIMD but also more general flows.

2 Model, Notation, and Background

To model internet endpoints competing for capacity at a bottleneck router, we use the
window game of [7]. LetN be the set of players,|N | = n, with each player representing
an internet endpoint. The strategy set for each player is theset of all possible window
sizes, integer values between0 andC, whereC is the capacity of the bottleneck router.
Let wi be the window size requested by playeri. Let w = (w1, w2, . . . , wn); w is a
strategy profilevector of the game. Letw−i refer to the vector of all the strategies in
w exceptwi. Let W =

∑n

i=1 wi and letW−i = W − wi. The bottleneck router uses
a (possibly randomized) queuing algorithm (like Droptail,RED, etc.), to decide how
many of each player’s packets to keep, and how many to drop. Therefore the queuing
policy maps each strategy profilew to a corresponding vector that indicates for each
player i how many of itswi packets are kept (in expectation),keepi, and how many
are dropped,wi − keepi. As described in the previous section,g ≥ 0 is a real value
that indicates how much detriment a lost packet causes to each player. Then for any
i = 1 . . . n, function ofi is πi(w) = (keepi) − g(wi − keepi).

A best responsetow−i for each playeri is thenbri(w−i) = arg maxwi
πi(wi, w−i).

2.1 Adaptive Learning and Imitation Dynamics

We now more formally present the relevant aspects of evolutionary game theory’s adap-
tive learning model [9, 21, 22], as well as the imitation dynamics of [13]. A related,
more detailed summary can be found in [3], in which adaptive learning and imitation
dynamics are applied to a load balancing game.

In the adaptive learning model with imitation dynamics, each of n players has a
finite memory of their own actions and payoffs in the previousm rounds of play. After
each round, each player samples (uniformly at random)s of the m previous rounds
of play, and then in the next round, plays the strategy (in ourcase, the window size)
that yielded highest average payoff over the rounds that were sampled. In this way, the
player is “imitating” the strategy that has served her well in the past.

These dynamics correspond to a Markov processP , where each state in the process
is the history of the lastm rounds of play. Each play history is comprised ofm strategy
profiles, and a state where allm strategy profiles are the same is called amonomorphic
state.4 The transition probabilities between states of the processare determined by the

4 For expository simplicity, if a monomorphic state hasw as the strategy profile that fills its
history, we will sometimes abuse notation and usew not just as the name of the strategy
profile, but when the context is clear, as the name of the monomorphic state containingw.



imitation dynamics described above. Arecurrent classof a Markov process is a set of
states such that there is zero probability of leaving the setonce a state in the set has
been reached, but positive probability of reaching any state in the set from any other
state in the set. Josephson and Matros [13] prove the following about the processP .

Theorem 2.1 ([13]).If s/m ≤ 1/2, a subset of states is a recurrent class if and only if
it is a singleton set containing a monomorphic state.

If we now suppose that in each round, each player with probability ǫ > 0 does not
follow the imitation dynamics, but instead chooses a strategy at random, we have modi-
fied the Markov process so that there is always positive probability of eventually reach-
ing any state from any other state. Therefore, there is a unique stationary distribution
over the states in this modified process. We refer to this modified process as theper-
turbedMarkov process,P ǫ and the stationary distribution asµǫ. Thestochastically sta-
ble states(SSS) are those statesh in this modified process for whichlimǫ→0 µǫ(h) > 0.

A better replyis a unilateral strategy deviation by a player that gives that player at
least as high a payoff as the original strategy profile. I.e.,x is a better reply for playeri
if πi(x,w−i) ≥ πi(w). A cusber setor a set “closed under single better replies,” is a set
of strategy profiles such that any sequence of better replies, by any sequence of players,
starting from any strategy profile in the set, always leads toanother strategy profile that
is also in the set. Aminimal cusber setis a cusber set such that if any strategy profile is
removed, the remaining set is no longer a cusber set.

Theorem 2.2 ([13]).Under imitation dynamics, the profiles in the set of stochastically
stable states are a minimal cusber set or a union of minimal cusber sets.

Note that the following corollary is an immediate consequence of Theorem 2.2.

Corollary 2.3. If a single strategy profile comprises the only minimal cusber set in a
game, then that is the only strategy profile in the set of stochastically stable states under
imitation dynamics.

For a more complete background on stochastic stability and imitation dynamics, we
refer the reader to [22, 13]. In what remains, we assume thats/m ≤ 1/2.

3 Droptail

FIFO queues with Droptail are widely used in Internet routers. While the queue has not
reached its capacity, incoming packets are inserted in the end of the queue. As soon
as the capacity is reached, any new incoming packets are dropped. We will start by
describing the window game model of Droptail, then discuss the NE, and finally prove
that there is a single stochastically stable state that corresponds to the unique NE.

Remember that for any profilew, we denote byW the total window size requested,
i.e., W =

∑N

i=1 wi. Under the Droptail routing policy, whenW > C, the router
choosesW − C packets uniformly at random to be dropped. Therefore, for any player
i with window sizewi, the expected number of packets ofi that will enter the queue is
wi ·C/W , whilewi · (1−C/W ) will be dropped. Of course, whenW ≤ C no packets
will be dropped. This means that the expected payoff for player i can be expressed as



πi(w) =

{

wi if wi ≤ C − W−i

wi ·
C
W

− gwi

(

1 − C
W

)

if wi > C − W−i .
(1)

We note that when the total window size equals the capacity, i.e.,wi + W−i = C,
then both pieces of the payoff function result in the same payoff. Therefore, forW = C
either of the two subcases can be used.

Definition 3.1. Definedg to be g+1
g

C n−1
n2 .

Efraimidis and Tsavlidis in [7] proved that, assumingg ≤ n − 1,5 the profile
(dg, ..., dg) is the uniquesymmetricNE. In fact, as the next theorem states, that is the
only NE for the caseg ≤ n − 1. The proof, which involves first determining the best
response function for each player, and then ruling out the possibility of all other NE,
can be found in the full version of this paper.

Theorem 3.2. If g ≤ n − 1, then the outcome in which each player’s window size is
dg = (g+1)C(n−1)

n2g
is the only NE.

In the following, we will assume thatg ≤ n − 1, since the case whereg > n − 1 is
of no practical relevance. We will now establish that the state (dg, . . . , dg) is the only
SSS. Our proof uses the fact that any profile in a stochastically stable state is found in
a minimal cusber set (Theorem 2.2), along with the fact that under Droptail the only
minimal cusber set in our game is the NE profile itself. We firstgive two lemmas that
allow us to establish the latter fact, by showing there is a better-reply path from any
profile to the NE profile. Due to lack of space, we refer to the full version of this work
for the proof of Lemma 3.3.

Lemma 3.3. Letw 6= (dg . . . , dg), W ≥ C. Within at most two better replies, a profile
w′ can be reached, such that for anyk with wk = dg, w′

k = dg, and there is some
playeri, such thatwi 6= dg andw′

i = dg. Moreover,W ′ ≥ C.

Lemma 3.4. For anyw 6= (dg, . . . , dg), there is a finite sequence of better replies that
leads to the profile(dg, . . . , dg).

Proof. We note first that ifW < C, then for any playeri, playingC − W−i is a better
response thanwi. Hence we will assume thatW ≥ C. Note that applying Lemma 3.3
to w 6= (dg, . . . , dg), we will obtain somew′ such that stillW ′ ≥ C. Therefore, by
simply invoking Lemma 3.3 at mostn times, we can see that there is a path of (in total)
at most2n + 1 better response moves fromw to the profile(dg, . . . , dg). ⊓⊔

Theorem 3.5. For g ≤ n − 1, the state in which every player playsdg is the unique
stochastically stable state.

Proof. First of all, note thatdg is the unique better response toW−i = (n−1)dg. There-
fore the profilea = (dg, . . . , dg) is a minimal cusber set. Moreover, by Lemma 3.4,
there is a better response path from anyw 6= a to a. Therefore any other cusber set
would have to containa, which implies there is no other minimal cusber set. Hence, by
Corollary 2.3,a is the only state that is stochastically stable. ⊓⊔

5 Given that the number of flows that share the capacity of a bottleneck router is large, the case
thatg > n − 1 is not realistic, and thus of no practical interest. For completeness, the NEfor
the case thatg > n − 1 are discussed in the full version of this work.



4 RED (Random Early Detection)

RED (Random Early Detection) [8] was meant to keep the average queue size low. It
works similarly to Droptail, but starts dropping packets before the queue is full. When
the total load at the router exceeds a system-defined minimumthresholdT , the router
begins dropping each new arriving packet with probability proportional to the load. Af-
ter total load exceeds a system-defined maximum threshold, the packets are dropped
with probability 1. (Note that when the maximum threshold isset toC, then once ca-
pacity is reached, RED behaves exactly like Droptail.)

To simplify our study, we will assume that the maximum threshold is C, but we
will leave the minimum thresholdT as a free parameter. We then must model the RED
mechanism in the window game setup. Assume that the current load at the queue isL ≥
T . Then, according to RED, each new arriving packet will be dropped with probability
L−T
C−T

. Assume that whenW packets arrive sequentially, the expected number of them
that enter the queue isx. In contrast to this sequential process where packets arrive one
by one, using the window game we assume that given a strategy profilew, all W packets
arrive at the same time. Each packet will be admitted to the queue with probability x

W

(x packets are chosen uniformly at random). IfW ≤ T , then all packets are admitted.

Lemma 4.1. Assume that RED is used and letw be a strategy profile such thatW > T .
i) If W ≥ WC , whereWC = (C − T )HC−T + T , then the queue size reaches C.
ii) If T ≤ W < WC , thenT + k̃W packets enter the queue, (and the probability for

any packet to be kept isk̃W +T
W

), wherek̃W ≈ (C − T )
(

1 − e−
W−T

C−T

)

.

Proof. The proof uses the solution to the well-known coupon collector problem. In
what follows we use the termkeptto refer to the event of a packet not being dropped.
We consider the case thatW packets arrive sequentially. Consider the moment at which
the queue size becomesT + i − 1, for somei, 1 ≤ i ≤ C − T . Let Xi be a random
variable that represents the number of packets that arrive to the system until the queue
size reachesT + i (i.e., Xi − 1 is the number of packets that arrive to the router and
get dropped until one is kept). According to the descriptionof RED, whenT + i − 1
packets are already in the queue, the probability that a newly arriving packet is dropped
is i−1

C−T
. This implies thatE[Xi] = C−T

C−T−i+1 . Let Hj be thejth harmonic number.

i) WC = T + E
[

∑C−T

i=1 Xi

]

= T +
∑C−T

i=1
C−T

C−T−i+1 = (C − T )HC−T + T .

ii) The total number number of packetsk̃W that enter the queue, out of the total

of W that arrive, is given as the maximumk, such thatT + E
[

∑k

i=1 Xi

]

≤ W ⇔
∑k

i=1
C−T

C−T−i+1 ≤ W − T ⇔ (C − T ) (HC−T − HC−T−k) ≤ W − T .

ApproximatingHj with ln j we get:ln(C − T − k) ≥ ln(C − T ) − W−T
C−T

which

givesk̃W ≈ (C − T )
(

1 − e−
W−T

C−T

)

. ⊓⊔

In order to simplify our presentation (and to allow clean formulation of a best re-
sponse function), we will approximatẽkW by kW = W−T

HC−T
. Note thatkW is also a

continuous function, whilekT = 0 andkWC
= C − T ; therefore, whenW equalsT



(respectively,WC), the total number of packets entering the queue isT (respectively,
C), in accordance to Lemma 4.1. The payoff function of flowi is now expressed as:

πRED
i (w) =







wi if W ≤ T

wi ·
kW +T

W
− gwi

(

1 − kW +T
W

)

if T < W ≤ WC

wi ·
C
W

− gwi

(

1 − C
W

)

if W > WC

The best response function of RED differs according to the value ofg. In particular,
there are three possible ranges forg. Due to space limitations, we will only discuss

here the case whereg ∈ Rg, for Rg =
[

C
(C−T )(HC−T −1) , n − 1

]

, which is the most

practically relevant range of values.6 We defer the other cases, as well as the proofs of
the following two theorems, to the full version of this work.

Definition 4.2. Definerg = T (g+1)(HC−T −1)
gHC−T −g−1 · n−1

n2 .

Theorem 4.3. If g ∈ Rg, then there is a unique NE, such thatwi = rg, for all i.

Theorem 4.4. If g ∈ Rg, then the only stochastically stable state under RED is the
state where all players set their window sizes torg.

The above theorems imply that under RED the system will converge to the unique
Nash Equilibrium. Given thatg ∈ Rg, the total congestion will be less than the cor-
responding one in Droptail. Still, however, the overflow is large: asn grows, since
(g+1)(HC−T −1)

gH−g−1 > g+1
g

, the total window size will be (roughly) at least2T . And, asg
decreases to values outside ofRg, the congestion at RED NE can sometimes be even
greater than at the Droptail NE. More details can be found in the full version of this
work.

5 “Fair” queue policy

In this section we study the queuing policy proposed by Gao etal. in [10]. The main
idea (similar also to the Prince algorithm of [7]) is that in case of congestion, the most
demanding flow is punished. Assuming that all players are fully informed of the other
players’ strategies, this policy was constructed so as to have a unique NE in which all
players share the capacity equally. In a more realistic setting, where the rates at which
other flows send packets are not globally known, the authors wish to reach a less lofty
goal: if all flows but one have fixed rates, then the unrestricted flow cannot use up much
more of the router queue capacity at the expense of the fixed-rate flows. We will show
here that in fact, the fair equilibrium is also the only stochastically stable state. This
implies that, even without fully informed players, the algorithm in [10] can achieve the
fair NE, even when all flows are allowed to be arbitrarily aggressive.

The window game adaptation of Protocol I in [10] works as follows. For any profile
(w1, · · · , wn), if W ≤ C then for any flowi, all wi packets will enter the queue, i.e.

6 In practiceT = λC, for some constantλ meaning that C

(C−T )(HC−T −1)
is a decreasing

function onC tending to 0, asC grows large.



πi(w) = wi. On the other hand, ifW > C then leti0 = arg maxi∈N{wi} (breaking
ties arbitrarily). Flowi0 will be the one to be punished for the overflow, and ifwi0 <
W − C then the rest of the packets will be dropped according to Droptail. In other
words,πi0 = max{0, wi0 − (W − C)} − g · min{wi0 ,W − C}, while for anyi 6= i0,

πi(w) =

{

wi if wi0 ≥ W − C

wi ·
C

W−wi0

− gwi

(

1 − C
W−wi0

)

if wi0 < W − C .
(2)

The next theorem was stated in [7].

Theorem 5.1. Assumingg > 0, there is a unique NE in which all players playC/n.

The following theorem establishes the fact that the unique NE is also the only
stochastically stable state. We prove this by showing that the profile(C/n, ..., C/n)
is the only minimal cusber set.

Theorem 5.2. If g > 0, then the only stochastically stable state is(C/n, ..., C/n).

Proof. Let ŵ = (C/n, · · · , C/n). We will show that the singleton set{ŵ} is the
only minimal cusber set. Then we can conclude using Corollary 2.3that ŵ is the only
stochastically stable state. First note that{ŵ} is a minimal cusber set: any player de-
viating from ŵ will be strictly decreasing her payoff. (Assume that a player i moves
to some valuex 6= C/n. If x < C/n, thenπi(x, ŵ−i) = x < C/n = πi(ŵ). If
x > C/n, thenx−C/n of her packets will be dropped and her payoff will decrease to
πi(x, ŵ−i) = C/n − g(x − C/n) < πi(ŵ), sinceg > 0.)

We proceed now to showing that for any profilew 6= ŵ, there is a finite better
response path tôw. Assume first thatW > C and leti0 = arg maxi∈N{wi}. Then
min{wi0 ,W − C} of i0’s packets get dropped. In that case it is at least as good fori0
to playmax{0, wi0 − (W − C)}, since the same amount ofi0’s packets will enter the
queue as before, but without any being dropped. We will call this amove of typeA.

Assume now thatW = C, but w 6= (C/n, · · · , C/n). Let j be the player with
the maximum window size inw, i.e., j = argi∈N max wi. The fact thatW = C
andw 6= ŵ, imply thatwj > C/n. Moreover there must be some playerk 6= j, with
wk < C/n. PlayingC/n is a better response tok, sinceC/n < wj , meaning thatj will
be the one to be punished for the overflow. (The new total window size cannot exceed
the capacity by more thanC/n, implying only packets from flowj will be dropped.)
Therefore,k gets more packets in the queue by changingwk to C/n, and still none
dropped. We will call this amove of typeB.

Now the better response path toŵ is constructed as follows: From anyw, if W < C,
then any player can improve her payoff by increasing her window size byC − W . We
then arrive at a profilew′ whereW ′ = C. If W > C, after fewer thann moves of type
A, a strategy profilew′ is reached whereW ′ = C.

For anyw′ such thatW ′ = C, if w′ 6= ŵ, then a move of typeB occurs in which
a player that inw′ played something less thanC/n moves toC/n. This is immediately
followed by a move of typeA in which a player that inw′ was playing something greater
thanC/n reduces her window size. Ifw′′ corresponds to the new profile reached, then
againW ′′ = C. This alternation between moves of typeA and moves of typeB con-
tinues, untilŵ is reached. Note that once a player moves toC/n then she does not



change her window size anymore, meaning that the total number of steps needed until
ŵ is reached is finite. ⊓⊔

We note that the conditiong > 0 in the above theorem is necessary in order for the
cusber set to contain only the profile(C/n, . . . , C/n). If g = 0, then a flow can deviate
from the profile(C/n, . . . , C/n) by increasing its window size while still obtaining
exactly the same payoff. We also note that unlike the resultsof Sections 3 and 4, here,
the result in this section holds even if each flow has a different value forg, a value that
can be arbitrarily small.

6 Discussion

While Droptail and RED have stochastically stable states with high congestion at the
bottleneck router, the Gao et al. policy leads to fair and efficient use of the bottleneck
router capacity. Specifically, we’ve established that under Droptail queuing, the unique
stochastically stable state (and unique NE) is the profile inwhich all players send a
window size ofdg = C(g + 1)(n− 1)/(gn2). This means that ifg ≤ (n− 1)/(n + 1),
each player will be sending at least2C/n packets, which amounts to twice as many
total packets as the capacity allows.

Under RED, wheng is reasonably large (i.e., forg ∈ Rg), the unique stochastically
stable state (and unique NE) is the profile where all players send a window size ofrg,
which is greater thanT (g + 1)(n − 1)/(gn2). (Recall thatT < C is the threshold
value at which RED begins preemptively dropping packets. Itis a free parameter of
the RED protocol.) This means, analogously to the above discussion about Droptail,
that if g ≤ (n − 1)/(n + 1) (which is close to 1 asn grows large), players will be
sending at least2T/n. This would imply that even with values ofg nearly as large as
1, if deployers of RED routers setT to relatively large values, the gain with respect to
overflow, as compared to the case of Droptail, will be small.

On the other hand, the more discriminating Gao et al. protocol can be safely de-
ployed without knowledge of the specific value ofg: the endpoints each sendC/n as
long asg is positive. In addition, our results hold even when each player has its owng
value. Intuitively, this means the results apply even when the endpoints are all of dif-
ferent types: well-behaved TCP flows, more aggressive TCP flows, UDP flows, etc., as
long as dropped packets cause some loss to the flows, no matterhow small it is.

Finally we note the fact that the stochastically stable states in each case can be
reached with the players having very limited knowledge; they need not be aware of
the actions of other players, or even of their numbern. Even though we assumed that
players choose a window size between0 andC, any other sufficiently large upper bound
for the window sizes would have done just as well. In other words, the players need also
not be aware of the exact value of the router capacityC.
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