Chapter 1 - Computers and
Programs

Objectives

e To understand the respective roles of hardware and software in a comput-
ing system.

To learn what computer scientists study and the techniques that they use.
To understand the basic design of a modern computer.

To understand the form and function of computer programming languages.
To begin using the Python programming language.

To learn about chaotic models and their implications for computing.

The Universal Machine

Almost everyone has used a computer at one time or another. Perhaps you have
played computer games or used a computer to write a paper or balance your
checkbook. Computers are used to predict the weather, design airplanes, make
movies, run businesses, perform financial transactions, and control factories.

Have you ever stopped to wonder what exactly a computer is? How can one
device perform so many different tasks? These basic questions are the starting
point for learning about computers and computer programming.

A modern computer can be defined as “a machine that stores and manipu-
lates information under the control of a changeable program.” There are two

Chapter 1. Computers and Programs

key elements to this definition. The first is that computers are devices for ma-
nipulating information. This means we can put information into a computer,
and it can transform the information into new, useful forms, and then output or
display the information for our interpretation.

Computers are not the only machines that manipulate information. When
you use a simple calculator to add up a column of numbers, you are entering
information (the numbers) and the calculator is processing the information to
compute a running sum which is then displayed. Another simple example is a
gas pump. As you fill your tank, the pump uses certain inputs: the current price
of gas per gallon and signals from a sensor that reads the rate of gas flowing
into your car. The pump transforms this input into information about how much
gas you took and how much money you owe.

We would not consider either the calculator or the gas pump as full-fledged
computers, although modern versions of these devices may actually contain em-
bedded computers. They are different from computers in that they are built to
perform a single, specific task. This is where the second part of our definition
comes into the picture: Computers operate under the control of a changeable
program. What exactly does this mean?

A computer program is a detailed, step-by-step set of instructions telling a
computer exactly what to do. If we change the program, then the computer
performs a different sequence of actions, and hence, performs a different task.
It is this flexibility that allows your PC to be at one moment a word processor, at
the next moment a financial planner, and later on, an arcade game. The machine
stays the same, but the program controlling the machine changes.

Every computer is just a machine for executing (carrying out) programs.
There are many different kinds of computers. You might be familiar with Mac-
intoshes and PCs, but there are literally thousands of other kinds of computers
both real and theoretical. One of the remarkable discoveries of computer sci-
ence is the realization that all of these different computers have the same power;
with suitable programming, each computer can basically do all the things that
any other computer can do. In this sense, the PC that you might have sitting on
your desk is really a universal machine. It can do anything you want it to do,
provided you can describe the task to be accomplished in sufficient detail. Now
that’s a powerful machine!

1.2. Program Power .

Program Power

You have already learned an important lesson of computing: Software (pro-
grams) rules the hardware (the physical machine). It is the software that de-
termines what any computer can do. Without software, computers would just
be expensive paperweights. The process of creating software is called program-
ming, and that is the main focus of this book.

Computer programming is a challenging activity. Good programming re-
quires an ability to see the big picture while paying attention to minute detail.
Not everyone has the talent to become a first-class programmer, just as not ev-
eryone has the skills to be a professional athlete. However, virtually anyone can
learn how to program computers. With some patience and effort on your part,
this book will help you to become a programmer.

There are lots of good reasons to learn programming. Programming is a
fundamental part of computer science and is, therefore, important to anyone in-
terested in becoming a computer professional. But others can also benefit from
the experience. Computers have become a commonplace tool in our society. Un-
derstanding the strengths and limitations of this tool requires an understanding
of programming. Non-programmers often feel they are slaves of their comput-
ers. Programmers, however, are truly in control. If you want to become a more
intelligent user of computers, then this book is for you.

Programming can also be loads of fun. It is an intellectually engaging ac-
tivity that allows people to express themselves through useful and sometimes
remarkably beautiful creations. Believe it or not, many people actually write
computer programs as a hobby. Programming also develops valuable problem-
solving skills, especially the ability to analyze complex systems by reducing them
to interactions of understandable subsystems.

As you probably know, programmers are in great demand. More than a few
liberal arts majors have turned a couple of computer programming classes into
a lucrative career option. Computers are so commonplace in the business world
today that the ability to understand and program computers might just give you
the edge over your competition, regardless of your occupation.

What is Computer Science?

You might be surprised to learn that computer science is not the study of com-
puters. A famous computer scientist named Edsger Dijkstra once quipped that
computers are to computer science what telescopes are to astronomy. The com-

Chapter 1. Computers and Programs

puter is an important tool in computer science, but it is not itself the object of
study. Since a computer can carry out any process that we can describe, the real
question is What processes can we describe? Put another way, the fundamental
question of computer science is simply What can be computed? Computer sci-
entists use numerous techniques of investigation to answer this question. The
three main ones are design, analysis, and experimentation.

One way to demonstrate that a particular problem can be solved is to actu-
ally design a solution. That is, we develop a step-by-step process for achieving
the desired result. Computer scientists call this an algorithm. That’s a fancy
word that basically means “recipe.” The design of algorithms is one of the most
important facets of computer science. In this book you will find techniques for
designing and implementing algorithms.

One weakness of design is that it can only answer the question What is com-
putable? in the positive. If I can devise an algorithm, then the problem is solv-
able. However, failing to find an algorithm does not mean that a problem is
unsolvable. It may mean that I'm just not smart enough, or I haven’t hit upon
the right idea yet. This is where analysis comes in.

Analysis is the process of examining algorithms and problems mathemati-
cally. Computer scientists have shown that some seemingly simple problems
are not solvable by any algorithm. Other problems are intractable. The algo-
rithms that solve these problems take too long or require too much memory to
be of practical value. Analysis of algorithms is an important part of computer
science; throughout this book we will touch on some of the fundamental princi-
ples. Chapter 13 has examples of unsolvable and intractable problems.

Some problems are too complex or ill-defined to lend themselves to anal-
ysis. In such cases, computer scientists rely on experimentation; they actually
implement systems and then study the resulting behavior. Even when theoret-
ical analysis is done, experimentation is often needed in order to verify and
refine the analysis. For most problems, the bottom line is whether a working,
reliable system can be built. Often we require empirical testing of the system
to determine that this bottom line has been met. As you begin writing your
own programs, you will get plenty of opportunities to observe your solutions in
action.

I have defined computer science in terms of designing, analyzing, and eval-
uating algorithms, and this is certainly the core of the academic discipline.
These days, however, computer scientists are involved in far-flung activities,
all of which fall under the general umbrella of computing. Some example areas
include networking, human-computer interaction, artificial intelligence, compu-

tat
sof
sys
kny

i

You
pro
the
car.
hav
etc.

mol

higl
sho
“bre
cart
nun
are |

info

1.4. Hardware Basics

Output
Devices

SO (I S D s

Input
Devices

.)

Secondary
Memory

IS ISR e

Figure 1.1: Functional view of a computer

tational science (using powerful computers to model scientific data), databases,
software engineering, web and multimedia design, management information
systems, and computer security. Wherever computing is done, the skills and
knowledge of computer science are being applied.

1.4\ Hardware Basics

You don’t have to know all the details of how a computer works to be a successful
programmer, but understanding the underlying principles will help you master
the steps we go through to put our programs into action. It’s a bit like driving a
car. Knowing a little about internal combustion engines helps to explain why you
have to do things like fill the gas tank, start the engine, step on the accelerator,
etc. You could learn to drive by just memorizing what to do, but a little more
knowledge makes the whole process much more understandable. Let’s take a
moment to “look under the hood” of your computer.

Although different computers can vary significantly in specific details, at a
higher level all modern digital computers are remarkably similar. Figure 1.1
shows a functional view of a computer. The central processing unit (CPU) is the
“brain” of the machine. This is where all the basic operations of the computer are
carried out. The CPU can perform simple arithmetic operations like adding two
numbers and can also do logical operations like testing to see if two numbers
are equal.

The memory stores programs and data. The CPU can only directly access
information that is stored in main memory (called RAM for Random Access Mem-

Chapter 1. Computers and Programs

ory). Main memory is fast, but it is also volatile. That is, when the power is
turned off, the information in the memory is lost. Thus, there must also be
some secondary memory that provides more permanent storage. In a modern
personal computer, this is usually some sort of magnetic medium such as a

hard disk (also called a hard drive). Optical media such as CD (compact disc)
and DVD (digital versatile disc) and flash memory devices such as USB memory
“sticks” are also common.

Humans interact with the computer through input and output devices. You
are probably familiar with common devices such as a keyboard, mouse, and
monitor (video screen). Information from input devices is processed by the CPU
and may be shuffled off to the main or secondary memory. Similarly, when
information needs to be displayed, the CPU sends it to one or more output
devices.

So what happens when you fire up your favorite game or word processing
program? First, the instructions that comprise the program are copied from the
(more) permanent secondary memory into the main memory of the computer.
Once the instructions are loaded, the CPU starts executing the program.

Technically the CPU follows a process called the fetch-execute cycle. The first
instruction is retrieved from memory, decoded to figure out what it represents,
and the appropriate action carried out. Then the next instruction is fetched,
decoded, and executed. The cycle continues, instruction after instruction. This
is really all the computer does from the time that you turn it on until you turn
it off again: fetch, decode, execute. It doesn’t seem very exciting, does it? But
the computer can execute this stream of simple instructions with blazing speed,
zipping through millions of instructions each second. Put enough simple instruc-
tions together in just the right way, and the computer does amazing things.

: rogramming Languages
P ing L

Remember that a program is just a sequence of instructions telling a computer
what to do. Obviously, we need to provide those instructions in a language that a
computer can understand. It would be nice if we could just tell a computer what
to do using our native language, like they do in science fiction movies. (“Com-
puter, how long will it take to reach planet Alphalpha at maximum warp?”)
Unfortunately, despite the continuing efforts of many top-flight computer scien-
tists (including your author), designing a computer to fully understand human
language is still an unsolved problem.

Even if computers could understand us, human languages are not very well

1.5. Programming Languages

suited for describing complex algorithms. Natural language is fraught with am-
biguity and imprecision. For example, if I say: “I saw the man in the park with
the telescope,” did I have the telescope, or did the man? And who was in the
park? We understand each other most of the time only because all humans share
a vast store of common knowledge and experience. Even then, miscommunica-
tion is commonplace.

Computer scientists have gotten around this problem by designing notations
for expressing computations in an exact and unambiguous way. These special
notations are called programming languages. Every structure in a programming
language has a precise form (its syntax) and a precise meaning (its semantics).
A programming language is something like a code for writing down the instruc-
tions that a computer will follow. In fact, programmers often refer to their
programs as computer code, and the process of writing an algorithm in a pro-
gramming language is called coding.

Python is one example of a programming language. It is the language that
we will use throughout this book.! You may have heard of some other languages,
such as C++, Java, Perl, Scheme, or BASIC. Although these languages differ in
many details, they all share the property of having well-defined, unambiguous
syntax and semantics. Languages themselves tend to evolve over time.

All of the languages mentioned above are examples of high-level computer
languages. Although they are precise, they are designed to be used and under-
stood by humans. Strictly speaking, computer hardware can only understand a
very low-level language known as machine language.

Suppose we want the computer to add two numbers. The instructions that
the CPU actually carries out might be something like this:

load the number from memory location 2001 into the CPU
load the number from memory location 2002 into the CPU
add the two numbers in the CPU

store the result into location 2003

This seems like a lot of work to add two numbers, doesn’t it? Actually, it’s even
more complicated than this because the instructions and numbers are repre-
sented in binary notation (as sequences of Os and 1s).

In a high-level language like Python, the addition of two numbers can be
expressed more naturally: ¢ = a + b. That’s a lot easier for us to understand,

!Specifically, the book was written using Python version 3.0. If you have an earlier version of
Python installed on your computer, you should upgrade to the latest stable 3.x version to try out
the examples.

Chapter 1. Computers and Programs

Source
Code
(Program)

Machine
Code

Compiler

Running
Program

Figure 1.2: Compiling a high-level language

but we need some way to translate the high-level language into the machine
language that the computer can execute. There are two ways to do this: a
high-level language can either be compiled or interpreted.

A compiler is a complex computer program that takes another program writ-
ten in a high-level language and translates it into an equivalent program in the
machine language of some computer. Figure 1.2 shows a block diagram of the
compiling process. The high-level program is called source code, and the re-
sulting machine code is a program that the computer can directly execute. The
dashed line in the diagram represents the execution of the machine code (also
known as “running the program”).

An interpreter is a program that simulates a computer that understands a
high-level language. Rather than translating the source program into a machine
language equivalent, the interpreter analyzes and executes the source code in-
struction by instruction as necessary. Figure 1.3 illustrates the process.

The difference between interpreting and compiling is that compiling is a one-
shot translation; once a program is compiled, it may be run over and over again
without further need for the compiler or the source code. In the interpreted
case, the interpreter and the source are needed every time the program runs.
Compiled programs tend to be faster, since the translation is done once and for
all, but interpreted languages lend themselves to a more flexible programming
environment as programs can be developed and run interactively.

The translation process highlights another advantage that high-level lan-
guages have over machine language: portability. The machine language of a
computer is created by the designers of the particular CPU. Each kind of com-
puter has its own machine language. A program for an Intel Core Duo won’t run
directly on a different CPU. On the other hand, a program written in a high-level
language can be run on many different kinds of computers as long as there is a

suiti
can
they

we
arc
dir
giv
to

lar
ab

co
yo

Py
[¢
Ty
>3

1.6. The Magic of Python

BT

Source
Code
(Program)

Computer
Running an ——

Interpreter

[—

Figure 1.3: Interpreting a high-level language

suitable compiler or interpreter (which is just another program). As a result, I
can run the exact same Python program on my laptop and my PDA; even though
they have different CPUs, they both sport a Python interpreter.

The Magic of Python

Now that you have all the technical details, it’s time to start having fun with
Python. The ultimate goal is to make the computer do our bidding. To this
end, we will write programs that control the computational processes inside the
machine. You have already seen that there is no magic in this process, but in
some ways programming feels like magic.

The computational processes inside the computer are like magical spirits that
we can harness for our work. Unfortunately, those spirits only understand a very
arcane language that we do not know. What we need is a friendly Genie that can
direct the spirits to fulfill our wishes. Our Genie is a Python interpreter. We can
give instructions to the Python interpreter, and it directs the underlying spirits
to carry out our demands. We communicate with the Genie through a special
language of spells and incantations (i.e., Python). The best way to start learning
about Python is to let our Genie out of the bottle and try some spells.

You can start the Python interpreter in an interactive mode and type in some
commands to see what happens. When you first start the interpreter program,
you may see something like the following:

Python 3.0 (r30:67503, Jan 19 2009, 09:57:10)
[GCC 4.1.3 20070929 (prerelease) (Ubuntu 4.1.2-16ubuntu2)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

| 10 Chapter 1. Computers and Programs

The >>> is a Python prompt indicating that our Genie (the Python interpreter)
is waiting for us to give it a command. In programming languages, a complete
command is called a statement. An interactive environment for interacting with i
an interpreter is called a command shell or just shell for short. yet.

Here is a sample interaction with a Python shell:

>>> print("Hello, World!")
Hello, World!
>>> print(2 + 3)

5
>>> print("2 + 3 =", 2 + 3) >>>
2+ 3 =5

Doy
Here I have tried out three examples using the Python print statement. The r
first statement asks Python to display the literal phrase Hello, World!. Python

responds on the next line by printing the phrase. The second print statement

asks Python to print the sum of 2 and 3. The third print combines these two g
ideas. Python prints the part in quotes 2 + 3 = followed by the result of adding acu
2 + 3, which is 5.

This kind of shell interaction is a great way to try out new things in Python.
Snippets of interactive sessions are sprinkled throughout this book. When you
see the Python prompt >>> in an example, that should tip you off that an
interactive session is being illustrated. It’s a good idea to fire up your own
Python shell and try the examples.

Usually we want to move beyond one-line snippets and execute an entire
sequence of statements. Python lets us put a sequence of statements together to
create a brand-new command or function. Here is an example of creating a new
function called hello:

>

>>> def hello():
print("Hello")
print ("Computers are fun!")

>>>

The first line tells Python that we are defining a new function and we are naming
ithello. The following lines are indented to show that they are part of the hello
function. (Note: some shells will print ellipses [“...”] at the beginning of the
indented lines). The blank line at the end (obtained by hitting the <Enter> key
twice) lets Python know that the definition is finished, and the shell responds

1.6. The Magic of Python

with another prompt. Notice that typing the definition did not cause Python to
print anything yet. We have told Python what should happen when the hello
function is used as a command; we haven’t actually asked Python to perform it
yet.

A function is invoked (or called) by typing its name followed by parentheses.
Here’s what happens when we use our hello command:

>>> hello()

Hello

Computers are fun!
>>>

Do you see what this does? The two print statements from the hello function
definition are executed in sequence.

You may be wondering about the parentheses in the definition and use of
hello. Commands can have changeable parts called parameters (also called
arguments) that are placed within the parentheses. Let’s look at an example of
a customized greeting using a parameter. First the definition:

>>> def greet(person):
print ("Hello", person)
print("How are you?")

Now we can use our customized greeting.

>>> greet("John")
Hello John

How are you?

>>> greet("Emily")
Hello Emily

How are you?

>>>

Can you see what is happening here? When using greet we can send different
names to customize the result. You might also notice that this looks similar to
the print statements from before. In Python, print is an example of a built-in
function. When we call the print function, the parameters in the parentheses
tell the function what to print.

We will discuss parameters in detail later on. For the time being the im-
portant thing to remember is that the parentheses must be included after the
function name whenever we want to execute a function. This is true even when

12

Chapter 1. Computers and Programs

no parameters given. For example, you can create a blank line of output using
print without any parameters.

>>> print()

>>>

But if you type just the name of the function, omitting the parentheses, the
function will not actually execute. Instead, an interactive Python session will
show some output indicating what function that name refers to, as this interac-
tion shows:

>>> greet

<function greet at 0x8393aec>
>>> print

<built-in function print>

The funny text 0x8393aec is the location (address) in computer memory where
the greet function definition happens to be stored. If you are trying this out on
your own computer, you will almost certainly see a different address.

One problem with entering functions interactively into a Python shell as we
did with the hello and greet examples is that the definitions are lost when we
quit the shell. If we want to use them again the next time, we have to type them
all over again. Programs are usually created by typing definitions into a separate
file called a module or script. This file is saved on a disk so that it can be used
over and over again.

A module file is just a text file, and you can create one using any program
for editing text, like a notepad or word processor program (provided you save
your program as a “plain text” file). A special type of program known as a pro-
gramming environment simplifies the process. A programming environment is
specifically designed to help programmers write programs and includes features
such as automatic indenting, color highlighting, and interactive development.
The standard Python distribution includes a programming environment called
IDLE that you may use for working on the programs in this book.

Let’s illustrate the use of a module file by writing and running a complete
program. Our program will illustrate a mathematical concept known as chaos.
Here is the program as we would type it into IDLE or some other editor and save
in a module file: :

File: chaos.py

A

def

mai:

dicz
con
ina
fun
dis

act
yot
(or
mi
PIc
an(

”
R=]

O oo B e o G D i A

1.6. The Magic of Python

A simple program illustrating chaotic behavior.

def main():
print("This program illustrates a chaotic function")
x = eval(input("Enter a number between O and 1: "))
for i in range(10):
x=3.9%xx* (1l -x)
print (x)

main()

This file should be saved with the name chaos.py. The .py extension in-
dicates that this is a Python module. You can see that this particular example
contains lines to define a new function called main. (Programs are often placed
in a function called main.) The last line of the file is the command to invoke this
function. Don’t worry if you don’t understand what main actually does; we will
discuss it in the next section. The point here is that once we have a program in
a module file, we can run it any time we want.

This program can be run in a number of different ways that depend on the
actual operating system and programming environment that you are using. If
you are using a windowing system, you can run a Python program by clicking
(or double-clicking) on the module file’s icon. In a command line situation, you
might type a command like python chaos.py. If you are using IDLE (or another
programming environment) you can run a program by opening it in the editor
and then selecting a command like import, run, or execute.

One method that should always work is to start a Python shell and then
import the file. Here is how that looks:

>>> import chaos

This program illustrates a chaotic function
Enter a number between O and 1: .25
.73125

76644140625

.698135010439

.82189581879

.570894019197

.955398748364

.166186721954

.540417912062

0O 00D OO T®

14

Chapter 1. Computers and Programs

0.9686289303
0.118509010176
>>>

Typing the first line import chaos tells the Python interpreter to load the chaos
module from the file chaos . py into main memory. Notice that I did not include
the .py extension on the import line; Python assumes the module will have a
.py extension.

As Python imports the module file, each line executes. It’s just as if we
had typed them one-by-one at the interactive Python prompt. The def in the
module causes Python to create the main function. When Python encounters the
last line of the module, the main function is invoked, thus running our program.
The running program asks the user to enter a number between 0 and 1 (in this
case, I typed “.25”) and then prints out a series of 10 numbers.

When you first import a module file in this way, Python creates a companion
file with a .pyc extension. In this example, Python creates another file on the
disk called chaos.pyc. This is an intermediate file used by the Python inter-
preter. Technically, Python uses a hybrid compiling/interpreting process. The
Python source in the module file is compiled into more primitive instructions
called byte code. This byte code (the .pyc) file is then interpreted. Having a

.pyc file available makes importing a module faster the second time around.
However, you may delete the byte code files if you wish to save disk space;
Python will automatically recreate them as needed.

A module needs to be imported into a session only once. After the mod-
ule has been loaded, we can run the program again by asking Python to exe-
cute the main command. We do this by using a special dot notation. Typing
chaos.main() tells Python to invoke the main function in the chaos module.
Continuing with our example, here is how it looks when we rerun the program

with .26 as the input:

>>> chaos.main()
This program illustrates a chaotic function
Enter a number between O and 1: .26

0.75036
Q.73054749456
0.T6TTOB625T33
0.6954993339
0.825942040734
0.560670965721

0.96(
0.14]
0.49
0.97
>>>

The
ave
take
und
in tl

#F
!

Th

pI(
tes

de

St
Iin
p

1.7. Inside a Python Program

0.960644232282
0.147446875935
0.490254549376
0.974629602149
2> >

1.7] Inside a Python Program

The output from the chaos program may not look very exciting, but it illustrates
a very interesting phenomenon known to physicists and mathematicians. Let’s
take a look at this program line by line and see what it does. Don’t worry about
understanding every detail right away; we will be returning to all of these ideas
in the next chapter.

The first two lines of the program start with the # character:

File: chaos.py
A simple program illustrating chaotic behavior.

These lines are called comments. They are intended for human readers of the
program and are ignored by Python. The Python interpreter always skips any
text from the pound sign (#) through the end of a line.

The next line of the program begins the definition of a function called main:

def main():

Strictly speaking, it would not be necessary to create a main function. Since the
lines of a module are executed as they are loaded, we could have written our
program without this definition. That is, the module could have looked like this:

File: chaos.py
A simple program illustrating chaotic behavior.

print("This program illustrates a chaotic function")
x = eval(input("Enter a number between O and 1: "))
for i in range(10):

X = 3ugrsiy £.(1 - x)

print (x)

16

Chapter 1. Computers and Programs

This version is a bit shorter, but it is customary to place the instructions that
comprise a program inside of a function called main. One immediate benefit of
this approach was illustrated above; it allows us to run the program by simply
invoking chaos.main(). We don’t have to restart the Python shell in order to
run it again, which would be necessary in the main-less case.

The first line inside of main is really the beginning of our program.

print ("This program illustrates a chaotic function")

This line causes Python to print a message introducing the program when it
runs.

Take a look at the next line of the program:
x = eval(input("Enter a number between 0 and 1: "))

Here x is an example of a variable. A variable is used to give a name to a value
so that we can refer to it at other points in the program.

The entire line is a statement to get some input from the user. There’s quite a
bit going on in this line, and we’ll discuss the details in the next chapter; for now,
you just need to know what it accomplishes. When Python gets to this statement,
it displays the quoted message Enter a number between O and 1: and then
pauses, waiting for the user to type something on the keyboard and press the
<Enter> key. The value that the user types in is then stored as the variable x. In
the first example shown above, the user entered .25, which becomes the value
of x.

The next statement is an example of a loop.

for i in range(10):

Aloop is a device that tells Python to do the same thing over and over again. This
particular loop says to do something 10 times. The lines indented underneath
the loop heading are the statements that are done 10 times. These form the
body of the loop.

x=3.9*x*x (1 - %)
print (x)

The effect of the loop is exactly the same as if we had written the body of
the loop 10 times:

x=3.9 % x*x (1 - x)
print (x)

tio

Th
mé
Re
is
pu
Sid
(0.

be

pPr

SCI

sta

1.7. Inside a Python Program

x = 3.9 % 1-x
print(x)
x = 3.9 % (. =)
print(x)
x = 3.9 * @l ~=)
print (x)
x =3.9 %)
print(x)
x = 3.9 % (e)
print (x)
x = 3.9 % Gl = @)
print (x)
x = 3.9 % (1-= %)
print (x)
x = 3.9 * (1. 7.%)
print (x)
x = 3.9 % (1.~ x)
print(x)

Obviously, using the loop instead saves the programmer a lot of trouble.
But what exactly do these statements do? The first one performs a calcula-
tion.

x=3.9%xx*x (1 -x)

This is called an assignment statement. The part on the right side of the=isa
mathematical expression. Python uses the * character to indicate multiplication.
Recall that the value of x is 0.25 (from the input above). The computed value
is 3.9(0.25)(1 — 0.25) or 0.73125. Once the value on the right-hand side is com-
puted, it is saved as (or assigned to) the variable that appears on the left-hand
side of the =, in this case x. The new value of x (0.73125) replaces the old value
(0.25).

The second line in the loop body is a type of statement we have encountered
before, a print statement.

print (x)

When Python executes this statement the current value of x is displayed on the
screen. So, the first number of output is 0.73125.

Remember the loop executes 10 times. After printing the value of x, the two
statements of the loop are executed again.

18

Chapter 1. Computers and Programs

o= 3U9WgENs (1 - x)
print(x)

Of course, now x has the value 0.73125, so the formula computes a new value of
x as 3.9(0.73125)(1 — 0.73125), which is 0.76644140625.

Can you see how the current value of x is used to compute a new value each
time around the loop? That’s where the numbers in the example run came from.
You might try working through the steps of the program yourself for a different
input value (say 0.5). Then run the program using Python and see how well you
did impersonating a computer.

Chaos and Computers

[said above that the chaos program illustrates an interesting phenomenon.
What could be interesting about a screen full of numbers? If you try out the
program for yourself, you'll find that, no matter what number you start with,
the results are always similar: the program spits back 10 seemingly random
numbers between 0 and 1. As the program runs, the value of x seems to jump
around, well, chaotically.

The function computed by this program has the general form: k(z)(1 — z),
where k in this case is 3.9. This is called a logistic function. It models cer-
tain kinds of unstable electronic circuits and is also sometimes used to predict
population under limiting conditions. Repeated application of the logistic func-
tion can produce chaos. Although our program has a well-defined underlying
behavior, the output seems unpredictable.

An interesting property of chaotic functions is that very small differences
in the initial value can lead to large differences in the result as the formula is
repeatedly applied. You can see this in the chaos program by entering numbers
that differ by only a small amount. Here is the output from a modified program
that shows the results for initial values of 0.25 and 0.26 side by side:

input 0.25 0.26
0.731250 0.750360
0.766441 0.730547
0.698135 0.767707
0.821896 0.695499
0.570894 0.825942
0.955399 0.560671

With
but
be a

tren
has

nom
com
SO-C
wes
its 1
prei

be
wej

pre

cor
as
pu

pr¢
ing

H

1.9. Chapter Summary

0.166187 0.960644
0.540418 0.147447
0.968629 0.490255
0.118509 0.974630

With very similar starting values, the outputs stay similar for a few iterations,
but then differ markedly. By about the fifth iteration, there no longer seems to
be any relationship between the two models.

These two features of our chaos program, apparent unpredictability and ex-
treme sensitivity to initial values, are the hallmarks of chaotic behavior. Chaos
has important implications for computer science. It turns out that many phe-
nomena in the real world that we might like to model and predict with our
computers exhibit just this kind of chaotic behavior. You may have heard of the
so-called butterfly effect. Computer models that are used to simulate and predict
weather patterns are so sensitive that the effect of a single butterfly flapping
its wings in New Jersey might make the difference of whether or not rain is
predicted in Peoria.

It’s very possible that even with perfect computer modeling, we might never
be able to measure existing weather conditions accurately enough to predict
weather more than a few days in advance. The measurements simply can’t be
precise enough to make the predictions accurate over a longer time frame.

As you can see, this small program has a valuable lesson to teach users of
computers. As amazing as computers are, the results that they give us are only
as useful as the mathematical models on which the programs are based. Com-
puters can give incorrect results because of errors in programs, but even correct
programs may produce erroneous results if the models are wrong or the initial
inputs are not accurate enough.

Chapter Summary

This chapter has introduced computers, computer science, and programming.
Here is a summary of some of the key concepts:

e A computer is a universal information-processing machine. It can carry out
any process that can be described in sufficient detail. A description of the
sequence of steps for solving a particular problem is called an algorithm.
Algorithms can be turned into software (programs) that determines what
the hardware (physical machine) can and does accomplish. The process
of creating software is called programming.

20

Chapter 1. Computers and Programs

e Python is an interpreted language. One good way to learn about Python is

e A Python program is a sequence of commands (called statements) for the

e Computer science is the study of what can be computed. Computer sci-
entists use the techniques of design, analysis, and experimentation. Com-
puter science is the foundation of the broader field of computing which
includes areas such as networking, databases, and information manage-
ment systems, to name a few.

e A basic functional view of a computer system comprises a central process-
ing unit (CPU), main memory, secondary memory, and input and output
devices. The CPU is the brain of the computer that performs simple arith-
metic and logical operations. Information that the CPU acts on (data and
programs) is stored in main memory (RAM). More permanent informa-
tion is stored on secondary memory devices such as magnetic disks, flash
memory, and optical devices. Information is entered into the computer via
input devices, and output devices display the results.

e Programs are written using a formal notation known as a programming

language. There are many different languages, but all share the property
of having a precise syntax (form) and semantics (meaning). Computer
hardware only understands a very low-level language known as machine
language. Programs are usually written using human-oriented high-level
languages such as Python. A high-level language must either be compiled
or interpreted in order for the computer to understand it. High-level lan-
guages are more portable than machine language.

to use an interactive shell for experimentation.

Python interpreter to execute. Python includes statements to do things
such as print output to the screen, get input from the user, calculate the
value of a mathematical expression, and perform a sequence of statements
multiple times (loop).

¢ A mathematical model is called chaotic if very small changes in the input
lead to large changes in the results, making them seem random or un-
predictable. The models of many real-world phenomena exhibit chaotic
behavior, which places some limits on the power of computing.

1.10. Exercises

1.10| Exercises

Review Questions
True/False
1. Computer science is the study of computers.
2. The CPU is the “brain” of the computer.
. Secondary memory is also called RAM.

. All information that a computer is currently working on is stored in main
memory.

. The syntax of a language is its meaning, and semantics is its form.

. A function definition is a sequence of statements that defines a new com-
mand.

. A programming environment refers to a place where programmers work.

. Avariable is used to give a name to a value so it can be referred to in other
places.

9. Aloop is used to skip over a section of a program.

10. A chaotic function can’t be computed by a computer.

Multiple Choice

1. What is the fundamental question of computer science?
a) How fast can a computer compute?
b) What can be computed?
¢) What is the most effective programming language?
d) How much money can a programmer make?

. An algorithm is like a
a) newspaper b) venus flytrap ¢) drum d) recipe

. A problem is intractable when
a) you cannot reverse its solution
b) it involves tractors

	pages1-7
	page1
	Page 1
	Titles
	Computers and
	Objectives
	Chapter 1
	[!]] The Universal Machine

	page2
	Page 1

	page3
	Page 1
	Titles
	11.21 Program Power
	11.31 What is Computer Science?

	page4
	Page 1

	page5
	Page 1
	Titles
	11.41 Hardware Basics

	Tables
	Table 1

	page6
	Page 1
	Titles
	11.51 Programming languages

	page7
	Page 1
	Titles

	~

	pages8-21-1

