
Chapter 1 Computers and
Programs

Objectives

• To understand the respective roles of hardware and software in a comput-

ing system.

• To learn what computer scientists study and the techniques that they use.

• To understand the basic design of a modern computer.

• Tounderstand the form and function of computer programming languages.

• To begin using the Python programming language.

• To learn about chaotic models and their implications for computing.

[!]] The Universal Machine

Almost everyone has used a computer at one time or another. Perhaps you have

played computer games or used a computer to write a paper or balance your

checkbook. Computers are used to predict the weather, design airplanes, make

movies, run businesses, perform financial transactions, and control factories.

Have you ever stopped to wonder what exactly a computer is? How can one

device perform so many different tasks? These basic questions are the starting

point for learning about computers and computer programming.

A modern computer can be defined as "a machine that stores and manipu-

lates information under the control of a changeable program." There are two

1

2 Chapter 1. Computers and Programs

key elements to this definition. The first is that computers are devices for ma-

nipulating information. This means we can put information into a computer,

and it can transform the information into new, useful forms, and then output or

display the information for our interpretation.

Computers are not the only machines that manipulate information. When

you use a simple calculator to add up a column of numbers, you are entering

information (the numbers) and the calculator is processing the information to

compute a running sum which is then displayed. Another simple example is a

gas pump. As you fill your tank, the pump uses certain inputs: the current price

of gas per gallon and signals from a sensor that reads the rate of gas flowing

into your car. The pump transforms this input into information about how much

gas you took and how much money you owe.

We would not consider either the calculator or the gas pump as full-fledged

computers, although modern versions of these devices may actually contain em-

bedded computers. They are different from computers in that they are built to

perform a single, sp'ecific task. This is where the second part of our definition

comes into the picture: Computers operate under the control of a changeable

program. What exactly does this mean?

A computer program is a detailed, step-by-step set of instructions telling a

computer exactly what to do. If we change the program, then the computer

performs a different sequence of actions, and hence, performs a different task.

It is this flexibility that allows your PC to be at one moment a word processor, at

the next moment a financial planner, and later on, an arcade game. The machine

stays the same, but the program controlling the machine changes.

Every computer is just a machine for executing (carrying out) programs.

There are many different kinds of computers. You might be familiar with Mac-

into shes and PCs, but there are literally thousands of other kinds of computers

both real and theoretical. One of the remarkable discoveries of computer sci-

ence is the realization that all of these different computers have the same power;

with suitable programming, each computer can basically do all the things that

any other computer can do. In this sense, the PC that you might have sitting on

your desk is really a universal machine. It can do anything you want it to do,

provided you can describe the task to be accomplished in sufficient detail. Now

that's a powerful machine!

1.2. Program Power

11.21 Program Power

You have already learned an important lesson of computing: Software (pro-

grams) rules the hardware (the physical machine). It is the software that de-

termines what any computer can do. Without software, computers would just

be expensive paperweights. The process of creating software is called program-
ming, and that is the main focus of this book.

Computer programming is a challenging activity. Good programming re-

quires an ability to see the big picture while paying attention to minute detail.

Not everyone has the talent to become a first-class programmer, just as not ev-

eryone has the skills to be a professional athlete. However, virtually anyone can
learn how to program computers. With some patience and effort on your part,

this book will help you to become a programmer.

There are lots of good reasons to learn programming. Programming is a

fundamental part of computer science and is, therefore, important to anyone in-

terested in becoming a computer professional. But others can also benefit from

the experience. Computers have become a commonplace tool in our society. Un-

derstanding the strengths and limitations of this tool requires an understanding

of programming. Non-programmers often feel they are slaves of their comput-

ers. Programmers, however, are truly in control. If you want to become a more

intelligent user of computers, then this book is for you.

Programming can also be loads of fun. It is an intellectually engaging ac-

tivity that allows people to express themselves through useful and sometimes

remarkably beautiful creations. Believe it or not, many people actually write

computer programs as a hobby. Programming also develops valuable problem-

solving skills, especially the ability to analyze complex systems by reducing them

to interactions of understandable subsystems.

As you probably know, programmers are in great demand. More than a few

liberal arts majors have turned a couple of computer programming classes into

a lucrative career option. Computers are so commonplace in the business world

today that the ability to understand and program computers might just give you

the edge over your competition, regardless of your occupation.

11.31 What is Computer Science?

Youmight be surprised to learn that computer science is not the study of com-

puters. A famous computer scientist named Edsger Dijkstra once quipped that

computers are to computer science what telescopes are to astronomy. The com-

3

4 Chapter 1. Computers and Programs

puter is an important tool in computer science, but it is not itself the object of
study. Since a computer can carry out any process that we can describe, the real
question is What processes can we describe? Put another way, the fundamental
question of computer science is simply What can be computed? Computer sci-
entists use numerous techniques of investigation to answer this question. The
three main ones are design, analysis, and experimentation.

One way to demonstrate that a particular problem can be solved is to actu-
ally design a solution. That is, we develop a step-by-step process for achieving
the desired result. Computer scientists call this an algorithm. That's a fancy
word that basically means "recipe." The design of algorithms is one of the most
important facets of computer science. In this book you will find techniques for
designing and implementing algorithms.

One weakness of design is that it can only answer the question What is com-
putable? in the positive. If I can devise an algorithm, then the problem is solv-
able. However, failing to find an algorithm does not mean that a problem is
unsolvable. It may mean that I'm just not smart enough, or I haven't hit upon
the right idea yet. This is where analysis comes in.

Analysis is the process of examining algorithms and problems mathemati-
cally. Computer scientists have shown that some seemingly simple problems
are not solvable by any algorithm. Other problems are intractable. The algo-
rithms that solve these problems take too long or require too much memory to
be of practical value. Analysis of algorithms is an important part of computer
science; throughout this book we will touch on some of the fundamental princi-
ples. Chapter 13 has examples of unsolvable and intractable problems.

Some problems are too complex or ill-defined to lend themselves to anal-
ysis. In such cases, computer scientists rely on experimentation; they actually
implement systems and then study the resulting behavior. Even when theoret-
ical analysis is done, experimentation is often needed in order to verify and
refine the analysis. For most problems, the bottom line is whether a working,
reliable system can be built. Often we require empirical testing of the system
to determine that this bottom line has been met. As you begin writing your
own programs, you will get plenty of opportunities to observe your solutions in
action.

I have defined computer science in terms of designing, analyzing, and eval-
uating algorithms, and this is certainly the core of the academic discipline.
These days, however, computer scientists are involved in far-flung activities,
all of which fall under the general umbrella of computing. Some example areas
include networking, human-computer interaction, artificial intelligence, compu-

tat
sof
sys
kne

You
pro
the
car.
hav
etc.
kno
mOl

higl
ShOl

"bra
carr
nUll

are I

info

1.4. Hardware Basics

Output

CPU Devices

Input

Devices

Main Secondary

M~mory Memory

Figure 1.1: Functional view of a computer

tational science (using powerful computers to model scientific data), databases,

software engineering, web and multimedia design, management information

systems, and computer security. Wherever computing is done, the skills and

knowledge of computer science are being applied.

11.41 Hardware Basics

Youdon't have to know all the details of how a computer works to be a successful

programmer, but understanding the underlying principles will help you master

the steps we go through to put our programs into action. It's a bit like driving a

car. Knowing a little about internal combustion engines helps to explain why you

have to do things like fill the gas tank, start the engine, step on the accelerator,

etc. You could learn to drive by just memorizing what to do, but a little more

knowledge makes the whole process much more understandable. Let's take a

moment to "look under the hood" of your computer.

Although different computers can vary significantly in specific details, at a

higher level all modern digital computers are remarkably similar. Figure 1.1

shows a functional view of a computer. The central processing unit (CPU) is the
"brain" of the machine. This is where all the basic operations of the computer are

carried out. The CPU can perform simple arithmetic operations like adding two

numbers and can also do logical operations like testing to see if two numbers

are equal.

The memory stores programs and data. The CPU can only directly access

information that is stored in main memory (called RAMfor Random Access Mem-

5

6 Chapter 1. Computers and Programs

my). Main memory is fast, but it is also volatile. That is, when the power is
turned off, the information in the memory is lost. Thus, there must also be
some secondary memory that provides more permanent storage. In a modern
personal computer, this is usually some sort of magnetic medium such as a
hard disk (also called a hard drive). Optical media such as CD (compact disc)
and DVD(digital versatile disc) and flash memory devices such as USBmemory
"sticks" are also common.

Humans interact with the computer through input and output devices. You
are probably familiar with common devices such as a keyboard, mouse, and
monitor (video screen). Information from input devices is processed by the CPU
and may be shuffled off to the main or secondary memory. Similarly, when
information needs to be displayed, the CPU sends it to one or more output
devices.

So what happens when you fire up your favorite game or word processing
program? First, the instructions that comprise the program are copied from the
(more) permanent secondary memory into the main memory of the computer.
Once the instructions are loaded, the CPU starts executing the program.

Technically the CPU follows a process called the fetch-execute cycle. The first
instruction is retrieved from memory, decoded to figure out what it represents,
and the appropriate action carried out. Then the next instruction is fetched,
decoded, and executed. The cycle continues, instruction after instruction. This
is really all the computer does from the time that you turn it on until you turn
it off again: fetch, decode, execute. It doesn't seem very exciting, does it? But
the computer can execute this stream of simple instructions with blazing speed,
zipping through millions of instructions each second. Put enough simple instruc-
tions together in just the right way, and the computer does amazing things.

11.51 Programming languages

Remember that a program is just a sequence of instructions telling a computer
what to do. Obviously, we need to provide those instructions in a language that a
computer can understand. Itwould be nice if we could just tell a computer what
to do using our native language, like they do in science fiction movies. ("Com-
puter, how long will it take to reach planet Alphalpha at maximum warp?")
Unfortunately, despite the continuing efforts of many top-flight computer scien-
tists (including your author), designing a computer to fully understand human
language is still an unsolved problem.

Even if computers could understand us, human languages are not very well

s
~

f-
'
f-
'

o
0

P>
P>

p.
.

p.
.

c+
c+

P
'
P
'

(J
)

(J
)

tv o o CAl

tv
tv

o
0

o
0

tv
..
..
..
.

f-
'.

f-
'.

::l
::l

c+
c+

o
0

c+
c+

P
'
P
'

(J
)

(J
)

a
a

'i:
l
'i:
l

C:
:C
::

..... U
1

\J (3 ~ !lJ 3 3

	pages1-7
	page1
	Page 1
	Titles
	Computers and
	Objectives
	Chapter 1
	[!]] The Universal Machine

	page2
	Page 1

	page3
	Page 1
	Titles
	11.21 Program Power
	11.31 What is Computer Science?

	page4
	Page 1

	page5
	Page 1
	Titles
	11.41 Hardware Basics

	Tables
	Table 1

	page6
	Page 1
	Titles
	11.51 Programming languages

	page7
	Page 1
	Titles

	~

	pages8-21-1

