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CTL has been studied extensively over the past two decades and is well-known to the model-checking
community [3]. FormalCheck™™ [1] is a formal verification tool developed by Lucent Technologies’ Bell Labs
and released commercially in 1997. Tt uses a particular class [6] of w-automata as its underlying semantic
model. Given a system modeled by the automaton P, and a behavioral attribute that P is intended to
possess modeled by the automaton 7', model-checking in this context consists of the automaton language
containment test: £(P) C L(T) [6]. In the context of CTL, the system model is given by a Kripke structure
P, the behavioral attribute is specified by a CTL formula T" and model-checking consists of the satisfiability
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Abstract

The logic CTL can express branching-time attributes that are not expressible with w-automata and
conversely the FormalCheck Query Language (FQL) whose semantics is founded on w-automata can
express sequentiality and eventuality behaviors that are not expressible with CTL (nor even its extension
CTL"). Since both CTL and FQL are commonly used in model-checking, it is of interest to compare
nonetheless related constructs common to both. In fact, there are subtle but important discrepancies
between common FQL expressions and seemingly but not actually equivalent CTL formulae. In some
cases these discrepancies illuminate common misunderstandings about the semantical meaning of the
given CTL formula, and thus are of interest to CTL users irrespective of FQL. The root cause of these
discrepancies is the inability of CTL to express “phase”— an unbounded succession of disjoint time
intervals in which a behavior (i.e., property or constraint) is required to hold. Phase is fundamental
to FQL. We show that much of FQL can be expressed by a simple extension CTLT of CTL formed by
conjoining “phase bits” to the atomic propositions. However, another behavior fundamental to FQL is
strong fairness, which we prove is not expressible even in CTLt. On the other hand, formulae with
alternation of path quantifiers fundamental to CTL cannot be expressed in FQL. It is the purpose of this
paper to clarify these relationships and distinctions.

Introduction

test: P =T [3].

*This work was supported by Lucent Technologies’ Bell Labs.



Today, among commercially available tools for model-checking, CTL and FQL are the two dominant
paradigms for defining the attributes to be verified. CTL is associated with several commercial tools, whereas
FQL is associated with FormalCheck which holds a dominant position in this market. Thus a comparison
of CTL and FQL is appropriate and of general interest.

Whereas CTL can express branching-time attributes that are not expressible with w-automata, FQL is
capable of expressing sequentiality and eventuality behaviors that are not expressible with CTL (or even
its extension CTL*). Thus, the expressiveness of FQL and CTL are not comparable. Since both these
paradigms are commonly used in model-checking, it is of interest to compare nonetheless related constructs
common to both CTL and FQL. In fact, there are subtle but important discrepancies between common FQL
expressions and seemingly but not actually equivalent CTL formulae. These are easily overlooked. Moreover,
the discrepancies are important and interesting. The root cause of these discrepancies is the inability of CTL
to express “phase”— an unbounded succession of disjoint time intervals in which a behavior (i.e., property or
constraint) is required to hold. Phase is fundamental to FQL. We show that much of FQL can be expressed
by a simple extension CTL* of CTL formed by conjoining “phase bits” to the atomic propositions. However,
another behavior fundamental to FQL is strong fairness, which we prove is not expressible even in CTL*.
On the other hand, formulae with alternation of path quantifiers fundamental to CTL cannot be expressed

in FQL.

This paper focuses upon specific CTL formulae with equivalent FQL expressions, as well as CTL formulae
and FQL expressions with no respective equivalent formulations. We give a table of specific formulae (in
CTL or its extensions) and equivalent FQL expressions. Some common CTL formulae which admit of no
equivalent FQL expressions are cited. Conversely, we prove that all FQL expressions which express safety
properties admit of equivalent CTL*' formulae, but most do not admit of equivalent CTL formulae. In
some of these cases there are CTL formulae which often have been presumed to be equivalent to the given
FQL expressions, but in fact are distinguished by models sensitive to phase. Finally, we prove that FQL
expressions which express strong fairness and its derivatives admit of no equivalent formulae even in CTLY.

2 Background and Definitions

In this paper we study equivalences and the non-existence of equivalences between FQIL expressions and
formulae in two extensions of CTL: CTL? which allows two temporal operators within a path formula and
CTL* which adds Boolean phase bits to the CTL atomic propositions.

A formula is said to be equivalent to an FQL expression if the two are both true on the same set of
Kripke structures (where, in the case of FQL, the Kripke structures are interpreted as a limit-prefix-closed
w-automaton [6], 7.e., an automaton all of whose runs are accepting). For a general treatment of the issue
of equivalence between liner-time and branching-time structures, see [5].

The syntax and semantics of CTL, its extension CTL* and of the linear-time propositional temporal logic
LTL are well-known [3].

The w-automata associated with FormalCheck comprising FQL are specified by a fixed set of param-
eterized macros. FQL is defined as arbitrary finite conjunctions of instantiations of various FQL macros.
(Conjunction is represented by concatenation and incurs no computational overhead; disjunction, negation
and nesting are not allowed.) Each macro has the same general format, embracing three qualified conditions:
an optional qualified enabling condition, a qualified fulfilling condition, and an optional qualified discharging
condition. The following shows the generic macro format [with optional components enclosed in square
brackets]:



[(Enabling Qualifier)(Enabling Condition))
(Fulfilling Qualifier)(Fulfilling Condition)
[(Discharging Qualifier)(Discharging Condition)]

The qualifier for the optional enabling condition is one of:
After, IfRepeatedly, IfEventually Always;
the qualifier for the fulfilling condition is one of:
Always, Never, Repeatedly, Eventually, Eventually Always;
and the qualifier for the optional discharging condition is one of:
Unless, UnlessAfter, Until, UntilAfter.

For example, a common FQL expression is
After(FEnabling Condition)
Always(Fulfilling Condition)
Unless(Discharging Condition).

The semantics of the respective FQL macros is based on a “phase bit” (in the underlying automaton)
whose state is ENABLED after each time the (optional) enabling condition becomes true and DISCHARGED
generally after each time that the (optional) discharging condition becomes true (see below for details).
Optionally, the fulfilling condition is required at the moment when the discharging condition becomes true —
if the qualifier UnlessAfter or UntilAfter is used.

The macros which involve Repeatedly, Eventually and Until in their qualifiers express liveness/
eventuality behaviors, while the remaining ones express safety behaviors. Until denotes strong until while
Unless denotes weak until.

The semantics of FQL is given in [1] and the full set of macros along with their semantics is available
upon request from k@research.bell-labs.com. Alternatively, every FQL expression can be represented by
a formula in LTLY, the linear-time propositional temporal logic LTL extended by adding phase bits to its
set of atomic propositions. The equivalence of LTT* and FQL was proved in [2]. In order to make this paper
self-contained, we give the LTLT formula for each FQL expression, in Tables 1 and 2. Likewise, CTL' is an
extension of CTL derived by adding an arbitrary finite number of phase bits to its set of atomic propositions.
The phase bit and its ramifications are described below.

CTL? is a sublogic of CTL* which extends CTL by allowing two temporal operators within a path
formula [9]. We will use it to relate FQL to CTL. The temporal operators of CTL? may be either nested or
connected by a binary Boolean connective. Negating one or both of the temporal operators is also allowed.
For example, AGFgrant and E(Xrequest)Ugrant are CTL? formulae.

A phase bit 1s a Boolean “history” variable p whose value at a given state of a Kripke structure is
determined by the path taken from the initial state to the given state, specifically by the sequence of truth
values of the atomic propositions along that path. This is a natural concept in the context of automata: p
corresponds to a 2-state state machine, with states ENABLED and DISCHARGED and associated predicates
expressed in terms of the atomic propositions for the respective state transitions.

Throughout this paper, for each FQL macro, we denote by e its enabling condition, by f its fulfilling
condition and by d its discharging condition. Thus, each FQL macro has as its parameters f and optionally



e and d. For simplicity, these will be suppressed in the given FQL expressions; which are associated with a
particular macro is determined by the macro according to its format as described above. Boolean conjunction
of conditions (corresponding to respective atomic propositions) will be denoted by .

The phase bit associated with a given FQL macro has e as its “enabling condition” enabling the transition
from its state DISCHARGED to ENABLED, and some function of f and d as its “discharging condition”
enabling the transition from ENABLED to DISCHARGED. For the purposes of this paper, the precise phase
bit discharging conditions do not matter. (In fact, they are one of: f, d, f *xd, =f x d, and which may be
readily inferred from the context.) For brevity, for a phase bit p, we denote its DISCHARGED state by pg
and its ENABLED state by —pg. Thus, the state transition pg — —pg i1s enabled by e, while the reverse
transition —py — pg is enabled by some function of f and d. The self-loops py — po and —py — —py are
enabled by the negation of the respective non-self-loop conditions, so the phase bit is a deterministic function

of e, f and d.

Phase bits may be added to LTL and CTL by including their respective states with the atomic propo-
sitions. The addition of phase bits to CTL allows CTL to capture a sense of history not otherwise possi-
ble. For example, the CTL* formula AG(e * pg — AXAFf) which is equivalent to the FQL expression
After(e)Eventually(f), gives higher precedence to f than e when the phase bit is in the ENABLED state
(i.e. when —pg is true). Thus, once e is true, pg becomes false and if subsequently e * f becomes true, the
formula does not require a subsequent instance of f as it would without the conditioning upon pg. (The
discharging condition for pg is f.) This is important in common usage where e is a guard which is set by
the condition e and remains set until it is cleared by the condition f. Thus, at the instant it is cleared, e * f
is true, but a subsequent f is not required. Similarly, e has precedence over f when the phase bit is in its
DISCHARGED state. With this precedence the formula enforces causality: the f must follow the e. Again,
causality is commonly required in mechanistic settings such as hardware verification: an occurrence of f
“lingering” from previous actions should not satisfy the formula when it is remains true with a subsequent
e (unless it survives the onset of e). By contrast, the CTL formula AG(e — AFf) stipulates that if f and
e are simultaneously true at the outset, then f need not be true again.

CTL? is strictly more expressible than CTL: as is well-known,
0Odd(q) = E“q holds at positions 1,3,5,...”
is not expressible in CTL [3]. However, the equation can be expressed as the following CTL* formula:
(Ipo) (po * AG(po — AX—pg) * AG(—py = AXpg) * EG(po — q))

Although the addition of phase bits to CTL increases its expressiveness, we will show that strong fairness,
expressible in FQL, cannot be expressed in CTL*t.

3 CTL Formulae with Equivalent FQL Expressions

Many commonly used CTL formulae without existential path quantification can be expressed in FQL. In
some cases, the corresponding FQL expression is awkward. However, the awkwardness signals a source of
potential confusion: in each such case, there is a simple FQL expression which is “almost” equivalent to
the CTL formula, and frequently is presumed incorrectly to be exactly equivalent to the CTL formula. In
these cases, it 1s the semantics of the FQL expression that is usually intended. This contrast thus provides
a warning to CTL users, whether or not they have an interest in FQL.
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. AG(f) = Always(f), AG(—f) = Never(f)
2. AG(c - AXAF(f))

This CTL formula is equivalent to the conjunction of the following two FQL expressions:

P1: After(e x (P2.po+ f * (- P2.po)))Eventually(f)

P2: After(e * f x (-P1.pg)Eventually(f)

where P1, P1 designate the respective expressions and Pl.py, P2.py denote their respective phase
bits. The FQL formulation seems unsettlingly complex. In fact, it underscores the fact that the
CTL formula requires a subsequent instance of the fulfilling condition f if the enabling condition e
remains true at the time that f becomes true. Typically, this is not the semantics that is wanted.
Rather, what is typically wanted for this behavior is the FQL expression and equivalent CTLT formula
After(e)Eventually(f) = AG(e * po = AXAF(f)). It can be proved that this behavior cannot be
expressed in CTL.

3. AG(e = AF(f)) = After(e x (—f))Eventually(f)

Note that this requires no causality between e and f, if f is true when e becomes true. If causality is re-

quired, then an instance of f must be true aftere becomes true, and as in item 2, After(e)Eventually(f)
is required in lieu of the stated CTL formula. The inequivalence of the CTL formulae of items 2 and

3 with After(e)Eventually(f) has been a source of considerable confusion among practitioners of
model-checking.

. AG(e — AX(f))

Analogous to item 2., this CTL formula is equivalent to the conjunction of the two FQL expressions:
P1: After(e x (P2.po+ f * (- P2.po))) Always(f)Unless After(true)

P2: After(e * f x (- Pl.pg)Always(f)UnlessAfter(true)

where Pl.pg, P2.py denote the respective phase bits as before. If e is not possible in two successive
states, the two FQL expressions may be replaced with simply After(e) Always(f)UnlessAfter(true).
However, none of these is typically what is wanted in a clocked system. If a system is clocked, it
is not the next event that is of interest, but rather the next clocked event (i.e., the next event con-
current with an active clock edge or level). Expressing “next clock” is very awkward with CTL.
In FQL, if clock denotes the predicate which defines the active clock edge or level, the expression
After(e)Never(clock)Unless(f) expresses the behavior that f occurs concurrently with the next
clock event following e.

. AF(f) = Eventually(f).

This may be used when f denotes a one-time occurrence such as initialization. More commonly, one
needs to express recurring behavior triggered by a given event e: After(e)Eventually(f).

. A(fUd) = Always(f)Until(d)

However, as in item 5, one more commonly wants to express the recurring behavior
After(e) Always(f)Until(d), which can be expressed in CTL* but not CTL.

CTL Formulae With No Equivalent FQL

FQL has no direct way to express existential path quantification. However, when there is only one existential
path quantifier and no others, there is an indirect way to check the CTL using a FQL-based model-checker.



1. EF(f)
FQL cannot directly express any CTL formula with existential path quantification E. However, if
there are no other path quantifiers, the negation of the property can be expressed in FQL: ~(EF(f)) =
AG(—f) = Never(f). If Never(f) is false, then EF(f) is true, and conversely.

2. AFAG(f)
This CTL formula has no FQL counterpart. However, it also is commonly confused with the LTL for-
mulaFG(f) and the equivalent CTL* formula AFG(f) = Eventually Always(f), to which AFAG(f)
i1s not equivalent.

3. AGEF(f).
This very important CTL formula is the “famous” reset formula, which expresses the behavior that
from every reachable state there exists a path to a state where f is true (commonly, f denotes “reset”).
Tt has no counterpart in FQL. (This is not to be confused with the fact that FormalCheck has a built-in
algorithm which in effect checks AGEF(reset) as a part of a broader check that the design model is
not over-constrained.)

5 FQL With Equivalent CTL' Formulae

It can be proved that no FQL expression with both enabling and discharging conditions admits of an
equivalent CTL or LTL formula; on the other hand, every FQL expression does have an equivalent LTLt
formula [2]. Table 1 gives a representative listing of those FQL expressions which admit of equivalent LTL
formulae. Table 2 is a representative listing of those FQL macros which admit of no equivalent LTL formulae,
and their equivalent LTLT formulae. We will determine which of those FQL macros from Tables 1 and 2
admit of equivalent CTL or CTLT Formulae.

It is not always easy to determine which of these can be expressed in CTL or CTL*. Because LTL and
CTL formulae are interpreted over different structures, we cannot compare them directly. A straightforward
approach is as follows: given a transition system M and an LTL formula ¢ to be checked with respect to
M | try to translate the CTL* formula A to an equivalent CTL formula ¢, and then check M with respect
to ¢. But the problem of how to decide whether Ay has an equivalent CTL formula ¢ is open. Kupferman
and Vardi [8] studied a more modest approach: instead of looking for some equivalent CTL formula to A,
they restricted themselves to the specific candidate 14, which precedes each temporal operator in ¢ by the
path quantifier A. Although A« may have an equivalent CTL formula and still not be equivalent to 14,
their method provides a practical means of translation which we will use for some cases.

Translation for some LTL formulae are obvious. For each of the LTL formulae: Gf, G(—f), Ff, fUd,
and fU(f xd) ¥, Ay is already a CTL formula, and thus the corresponding FQL macro (Table 1) has an
equivalent CTL formula.

Kupferman and Grunberg [9] showed that the CTL? formula EG(¢;Ug¢s) embodies all the expressive
superiority of CTL? over CTL. They provided rules for translating to equivalent CTL formulae all CTL?
formulae which do not contain EG(¢1Ug¢s). Table 3 gives those LTL formulae form Table 1 whose corre-
sponding CTL* formulae A%’s belong to CTL?, and thus the above result applies, giving rise to the listed
CTL formulae.



6 FQL With No equivalent CTL" formulae

The deepest part of the taxonomy is proving that certain FQL expressions admit of no equivalent CTL*
formulae. In this section we show strong fairness is not expressible in CTLY (Table 6). We also list those
FQL macros for which it is presumed (but not proved) that they are not expressible in CTL* (Table 5); for
these, we do know that they are not expressible in CTL. This extended abstract does not allow space for
the proofs which are available from the authors.

We use a theorem of Clark and Draghicescu [4] to conclude that the CTL* formula AFGf admits of no
equivalent CTL formula. Thus, neither does AG(GFe — FGf). Indeed, suppose f is always false; then
AG(GFe - FGf) = AG(GFe — False) = AGFG(—¢) = A(FG(—e)),

proving that the FQL macro IfRepeatedly Eventually Always admits of no equivalent CTL formula.
Similarly, one can prove that the other FQL expressions in Table 5 admit of no equivalent CTL formulae.

Finally, Immerman [7] has proved that strong fairness
IfRepeatedly Repeatedly. = G(GFe — GFf)
is not expressible in CTL™T, using Ehrenfeucht-Fraissé games. It follows that
IfRepeatedly Eventually_ = IfRepeatedly Repeatedly_

also is not expressible: see Table 6.

While
After_Eventually Always Unless_ = G(e x pg = X(FGf + Fd))

is based upon strong fairness, and is presumed not expressible in CTLT, its expressibility in CTL* is not
known.

Acknowledgements: We thank Neil Immerman for his game-theoretic proof that strong fairness cannot
be expressed in CTLT, Fabio Somenzi and Thomas Wilke for their guidance in translating LTL formulae to
equivalent CTL formulae and Bob Kurshan for suggesting the framework of this paper and general guidance.
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FQL expressions LTL formulae
Always_ Gf

Never_ G(—f)
After_Always_ G(e - XGY)
Always_Unless_ Gf+ fUd
Always_Until_ fUd
Always_UnlessAfter_ Gf+ fU(f*d)
Always_UntilAfter_ FU(f xd)
Eventually_ Ff

Eventually Unless_ Ff+Fd
IfRepeatedly _Repeatedly_ G(GFe — GFY)
IfRepeatedly _Eventually_ G(GFe = FY)
Repeatedly_ GFf
Repeatedly_Unless_ GFf+Fd
EventuallyAlways_ FG(f)
Eventually Always_Unless_ F(Gf+d)
After_EventuallyAlways_ G(e — FGY)
IfEventually Always Eventually_ G(FGe — GFYf)
IfRepeatedly _Eventually Always_ G(GFe = FGY)
IfEventually Always_EventuallyAlways_ | G(FGe — FGf)

Table 1: FQL expressions admitting of equivalent LTL Formulae

FQL expressions LTL¥ formulae
After_Always_Unless_ G(expo — X(Gf + fUd))
After_Always_Until_ G(ex po — X(fUd))
After_Eventually_ G(e* po — XFYf)
After_Repeatedly_Unless_ G(e*po — X(GFf + Fd)
After_Eventually Unless_ G(expo — XF(f + d))
After_EventuallyAlways Unless_ | G(e* po - X(FGf + Fd))

Table 2: FQL expressions with equivalent LTLT Formulae

LTL formulae CTL formulae
Ff+Fd AF(f+d)

Gf+ fUd —E(f + d)U(—f * —d)
Gf+ fU(f*d) | ~E(f*-d)U=f

Table 3: FQL LTL formulae with CTL? and hence CTL counterparts.



FQL LTLT formulae

CTLT formulae

GF[ + Fd
G(FGe — GF)
G(e = XGf)
G(e+po — X(Gf + fUQ))
(e * po — X(fUd))
(e *po = XFf)
(expo — XF(f +d))
(e * po — X(GF[ + Fd))

G
G
G
G

AGAFS
~E(~dUEG(~f % —d))
-EFEG(e * —f)
AG(c — AXAG/)
G(e* po — AX(=E(f * ~d)U(~f * =d)))
G(e * po — AXA(fUQ))
G(e* po — AXAFJ)
G(e * po — AXAF(f + d))
G(e * po = AX(~E(~dUEG(~f % ~d))))

Table 4: FQL LTLT formulae with CTL* counterparts.

FQL expressions

LTL formulae

Eventually Always_

FG(f)

IfRepeatedly Eventually Always_ G(GFe = FGY)
IfEventually Always EventuallyAlways_ | G(FGe — FGY)

After _Eventually Always_ G(e - FGY)
Eventually Always_Unless_ F(Gf+4d)
After _Eventually Always_Unless_ G(e* po = X(FGf + Fd))

Table 5: FQL expressions with no equivalent CTL formulae

FQL expressions

LTLT formulae

IfRepeatedly Repeatedly_. | G(GFe — GFY)
IfRepeatedly Eventually_ G(GFe = Ff)

Table 6: strong fairness not expressible in CTLY.
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